首页> 外文期刊>Mathematical structures in computer science >Equational axioms associated with finite automatarnfor fixed point operations in cartesian categories
【24h】

Equational axioms associated with finite automatarnfor fixed point operations in cartesian categories

机译:与有限自动机相关的方程式公理,用于笛卡尔类别中的定点运算

获取原文
获取原文并翻译 | 示例

摘要

The axioms of iteration theories, or iteration categories, capture the equational properties ofrnfixed point operations in several computationally significant categories. Iteration categoriesrnmay be axiomatized by the Conway identities and identities associated with finite automata.rnWe show that the Conway identities and the identities associated with the members of arnsubclass Q of finite automata is complete for iteration categories iff for every finite simplerngroup G there is an automaton Q ∈ Q such that G is a quotient of a group in the monoidrnM(Q) of the automaton Q. We also prove a stronger result that concerns identitiesrnassociated with finite automata with a distinguished initial state.
机译:迭代理论或迭代类别的公理捕获了几个具有计算意义的类别中固定点操作的方程式属性。迭代类别rn可以由Conway身份和与有限自动机相关的身份公理化。rn我们证明,对于每个迭代有限类别G的迭代类别,Conway身份和与有限自动机的arnsubclass Q成员相关的身份是完整的,如果每个有限简单组G有一个自动机Q ∈Q,使得G是自动机Q的单等式M(Q)中一个组的商。我们还证明了一个更强的结果,涉及与有限自动机相关的身份具有显着初始状态的身份。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号