首页> 外文期刊>Mathematical Programming >Q-superlinear convergence of the iterates in primal-dual interior-point methods
【24h】

Q-superlinear convergence of the iterates in primal-dual interior-point methods

机译:原始对偶内点法中迭代的Q超线性收敛

获取原文
获取原文并翻译 | 示例

摘要

Sufficient conditions are given for the Q-superlinear convergence of the iterates produced by primal-dual interior-point methods for linear complementarity problems. It is shown that those conditions are satisfied by several well known interior-point methods. In particular it is shown that the iteration sequences produced by the simplified predictor–corrector method of Gonzaga and Tapia, the simplified largest step method of Gonzaga and Bonnans, the LPF+ algorithm of Wright, the higher order methods of Wright and Zhang, Potra and Sheng, and Stoer, Wechs and Mizuno are Q-superlinearly convergent.
机译:给出了由线性对偶问题的原对偶内点法产生的迭代器的Q超线性收敛的充分条件。结果表明,通过几种众所周知的内点方法可以满足这些条件。特别是,它显示了由Gonzaga和Tapia的简化的预测器-校正器方法,Gonzaga和Bonnans的简化的最大步长方法,Wright的LPF +算法,Wright和Zhang的高阶方法,Potra和Sheng产生的迭代序列。 ,而Stoer,Wechs和Mizuno是Q超线性收敛的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号