首页> 外文期刊>Mathematical Programming >“Cone-free” primal-dual path-following and potential-reduction polynomial time interior-point methods
【24h】

“Cone-free” primal-dual path-following and potential-reduction polynomial time interior-point methods

机译:“无锥”原对偶路径跟随和势能减少多项式时间内点法

获取原文
获取原文并翻译 | 示例

摘要

We present a framework for designing and analyzing primal-dual interior-point methods for convex optimization. We assume that a self-concordant barrier for the convex domain of interest and the Legendre transformation of the barrier are both available to us. We directly apply the theory and techniques of interior-point methods to the given good formulation of the problem (as is, without a conic reformulation) using the very usual primal central path concept and a less usual version of a dual path concept. We show that many of the advantages of the primal-dual interior-point techniques are available to us in this framework and therefore, they are not intrinsically tied to the conic reformulation and the logarithmic homogeneity of the underlying barrier function.
机译:我们提出了一个框架,用于设计和分析用于凸优化的原始对偶内点方法。我们假设感兴趣的凸域的自协调障碍和障碍的勒让德变换都对我们可用。我们使用非常常用的原始中心路径概念和较不常用的双路径概念,将内点方法的理论和技术直接应用于给定的问题的良好表示形式(按原样,没有圆锥重新定义)。我们表明,在此框架中我们可以使用原始对偶内点技术的许多优点,因此,它们本质上不依赖于潜在障碍函数的圆锥重构和对数同质性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号