首页> 外文期刊>Mathematical Programming >A proximal cutting plane method using Chebychev center for nonsmooth convex optimization
【24h】

A proximal cutting plane method using Chebychev center for nonsmooth convex optimization

机译:使用Chebychev中心的近端切割平面方法进行非光滑凸优化

获取原文
获取原文并翻译 | 示例

摘要

An algorithm is developed for minimizing nonsmooth convex functions. This algorithm extends Elzinga–Moore cutting plane algorithm by enforcing the search of the next test point not too far from the previous ones, thus removing compactness assumption. Our method is to Elzinga–Moore’s algorithm what a proximal bundle method is to Kelley’s algorithm. Instead of lower approximations used in proximal bundle methods, the present approach is based on some objects regularizing translated functions of the objective function. We propose some variants and using some academic test problems, we conduct a numerical comparative study with Elzinga–Moore algorithm and two other well-known nonsmooth methods. Mathematics Subject Classification (2000) 90C30 - 90C25 - 65K05 Keywords Nonsmooth optimization - Subgradient - Proximal bundle methods - Cutting plane methods - Convex programming
机译:开发了用于最小化非光滑凸函数的算法。该算法通过强制搜索距离先前测试点不远的下一个测试点来扩展Elzinga-Moore切割平面算法,从而消除了紧凑性假设。对于Elzinga-Moore算法,我们的方法就像对Kelley算法的近端束方法一样。代替在近端束方法中使用的较低近似值,本方法基于某些对象,该对象正则化了目标函数的转换函数。我们提出了一些变体,并使用了一些学术测试问题,我们使用Elzinga-Moore算法和其他两种众所周知的非光滑方法进行了数值比较研究。数学学科分类(2000)90C30-90C25-65K05关键词非光滑优化-次梯度-近邻束方法-切平面方法-凸规划

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号