首页> 外文期刊>Mathematical Programming >Stabilized sequential quadratic programming for optimization and a stabilized Newton-type method for variational problems
【24h】

Stabilized sequential quadratic programming for optimization and a stabilized Newton-type method for variational problems

机译:用于优化的稳定顺序二次规划和用于变分问题的稳定牛顿型方法

获取原文
获取原文并翻译 | 示例

摘要

The stabilized version of the sequential quadratic programming algorithm (sSQP) had been developed in order to achieve fast convergence despite possible degeneracy of constraints of optimization problems, when the Lagrange multipliers associated to a solution are not unique. Superlinear convergence of sSQP had been previously established under the strong second-order sufficient condition for optimality (without any constraint qualification assumptions). We prove a stronger superlinear convergence result than the above, assuming the usual second-order sufficient condition only. In addition, our analysis is carried out in the more general setting of variational problems, for which we introduce a natural extension of sSQP techniques. In the process, we also obtain a new error bound for Karush–Kuhn–Tucker systems for variational problems that holds under an appropriate second-order condition.
机译:顺序二次编程算法(sSQP)的稳定版本已经开发出来,以便在与解决方案相关的拉格朗日乘数不是唯一的时候,尽管优化问题的约束可能会退化,但仍能实现快速收敛。 sSQP的超线性收敛先前是在强二阶最优条件下建立的(没有任何约束条件假设)。仅假设通常的二阶充分条件,我们证明了比上述结果更强的超线性收敛结果。另外,我们的分析是在更普遍的变分问题中进行的,为此我们引入了sSQP技术的自然扩展。在此过程中,我们还为Karush–Kuhn–Tucker系统的变分问题获得了一个新的误差界限,该误差在适当的二阶条件下成立。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号