首页> 外文期刊>Mathematical Problems in Engineering >Improved Degree Search Algorithms in Unstructured P2P Networks
【24h】

Improved Degree Search Algorithms in Unstructured P2P Networks

机译:非结构化P2P网络中的改进度搜索算法

获取原文
获取原文并翻译 | 示例

摘要

Searching and retrieving the demanded correct information is one important problem in networks; especially, designing an efficient search algorithm is a key challenge in unstructured peer-to-peer (P2P) networks. Breadth-first search (BFS) and depth-first search (DPS) are the current two typical search methods. BFS-based algorithms show the perfect performance in the aspect of search success rate of network resources, while bringing the huge search messages. On the contrary, DFS-based algorithms reduce the search message quantity and also cause the dropping of search success ratio. To address the problem that only one of performances is excellent, we propose two memory function degree search algorithms: memory function maximum degree algorithm (MD) and memory function preference degree algorithm (PD). We study their performance including the search success rate and the search message quantity in different networks, which are scale-free networks, random graph networks, and small-world networks. Simulations show that the two performances are both excellent at the same time, and the performances are improved at least 10 times.
机译:搜索和检索所需的正确信息是网络中的重要问题之一。特别是,设计有效的搜索算法是非结构化对等(P2P)网络中的关键挑战。广度优先搜索(BFS)和深度优先搜索(DPS)是当前的两种典型搜索方法。基于BFS的算法在带来巨大的搜索消息的同时,在网络资源的搜索成功率方面表现出了完美的性能。相反,基于DFS的算法减少了搜索消息的数量,也导致搜索成功率的下降。为了解决只有一种性能优异的问题,我们提出了两种记忆功能度搜索算法:记忆功能最大度算法(MD)和记忆功能偏好度算法(PD)。我们研究了它们的性能,包括在不同网络(无标度网络,随机图网络和小世界网络)中的搜索成功率和搜索消息量。仿真表明,这两个性能同时优异,并且性能至少提高了10倍。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2012年第6期|923023.1-923023.18|共18页
  • 作者单位

    Information Security Center, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876, China,Research Center on Fictitious Economy and Data Science, Chinese Academy of Sciences, Beijing 100190, China National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts and Telecommunications, Beijing 100876, China;

    Information Security Center, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876, China,Research Center on Fictitious Economy and Data Science, Chinese Academy of Sciences, Beijing 100190, China National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts and Telecommunications, Beijing 100876, China;

    Information Security Center, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876, China,Research Center on Fictitious Economy and Data Science, Chinese Academy of Sciences, Beijing 100190, China National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts and Telecommunications, Beijing 100876, China;

    Information Security Center, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876, China,Research Center on Fictitious Economy and Data Science, Chinese Academy of Sciences, Beijing 100190, China National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts and Telecommunications, Beijing 100876, China;

    Information Security Center, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876, China,Research Center on Fictitious Economy and Data Science, Chinese Academy of Sciences, Beijing 100190, China National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts and Telecommunications, Beijing 100876, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号