首页> 外文期刊>Mathematical Problems in Engineering >Evaluation of Flow-Induced Dynamic Stress and Vibration of Volute Casing for a Large-Scale Double-Suction Centrifugal Pump
【24h】

Evaluation of Flow-Induced Dynamic Stress and Vibration of Volute Casing for a Large-Scale Double-Suction Centrifugal Pump

机译:大型双吸离心泵蜗壳流动引起的动应力和振动的评估

获取原文
获取原文并翻译 | 示例

摘要

The transient analysis was carried out to investigate the dynamic stress and vibration of volute casing for a large double-suction centrifugal pump by using the transient fluid-structure interaction theory. The flow pulsations at flow rate ranging from 60% to 100% of the nominal flow rate (Q_d) were taken as the boundary conditions for FEM analysis of the pump volute casing structure. The results revealed that, for all operating conditions, the maximum stress located at the volute tongue region, whereas the maximum vibration displacement happened close to the shaft hole region. It was also found that the blade passing frequency and its harmonics were dominant in the variations of dynamic stress and vibration displacement. The amplitude of the dominant frequency for the maximum stress detected at 0.6 Q_d was 1.14 times that at Q_d, lower than the related difference observed for pressure fluctuations (3.23 times). This study provides an effective method to quantify the flow-induced structural dynamic characteristics for a large-scale double-suction pump. It can be used to direct the hydraulic and structural design and stable operation, as well as fatigue life prediction for large-scale pumps.
机译:利用瞬态流固耦合理论,对大型双吸离心泵蜗壳进行了瞬态分析。以额定流量(Q_d)的60%至100%范围内的流量脉动作为泵蜗壳结构有限元分析的边界条件。结果表明,在所有工况下,最大应力都位于蜗壳榫舌区域,而最大振动位移发生在靠近轴孔区域。还发现叶片的通过频率及其谐波是动应力和振动位移变化的主要因素。在0.6 Q_d处检测到的最大应力的主频率振幅是Q_d处的1.14倍,低于在压力波动下观察到的相关差(3.23倍)。这项研究提供了一种有效的方法来量化大型双吸泵的流动引起的结构动力学特性。它可用于指导液压和结构设计以及稳定的运行,以及大型泵的疲劳寿命预测。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2013年第9期|764812.1-764812.9|共9页
  • 作者单位

    College of Water Resources & Civil Engineering, China Agricultural University, Beijing 100083, China;

    College of Water Resources & Civil Engineering, China Agricultural University, Beijing 100083, China;

    College of Water Resources & Civil Engineering, China Agricultural University, Beijing 100083, China;

    College of Water Resources & Civil Engineering, China Agricultural University, Beijing 100083, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号