首页> 外文期刊>Mathematical Problems in Engineering >A Wavelet Kernel-Based Primal Twin Support Vector Machine for Economic Development Prediction
【24h】

A Wavelet Kernel-Based Primal Twin Support Vector Machine for Economic Development Prediction

机译:基于小波核的原始双支持向量机用于经济发展预测

获取原文
获取原文并翻译 | 示例

摘要

Economic development forecasting allows planners to choose the right strategies for the future. This study is to propose economic development prediction method based on the wavelet kernel-based primal twin support vector machine algorithm. As gross domestic product (GDP) is an important indicator to measure economic development, economic development prediction means GDP prediction in this study. The wavelet kernel-based primal twin support vector machine algorithm can solve two smaller sized quadratic programming problems instead of solving a large one as in the traditional support vector machine algorithm. Economic development data of Anhui province from 1992 to 2009 are used to study the prediction performance of the wavelet kernel-based primal twin support vector machine algorithm. The comparison of mean error of economic development prediction between wavelet kernel-based primal twin support vector machine and traditional support vector machine models trained by the training samples with the 3-5 dimensional input vectors, respectively, is given in this paper. The testing results show that the economic development prediction accuracy of the wavelet kernel-based primal twin support vector machine model is better than that of traditional support vector machine.
机译:经济发展预测使计划人员可以为未来选择正确的策略。本研究旨在提出一种基于小波核的原始双支持向量机算法的经济发展预测方法。由于国内生产总值(GDP)是衡量经济发展的重要指标,因此经济发展预测是指本研究中的GDP预测。基于小波核的原始双支持向量机算法可以解决两个较小的二次规划问题,而不是像传统的支持向量机算法那样解决大问题。利用1992年至2009年安徽省的经济发展数据,研究了基于小波核的原始双支持向量机算法的预测性能。本文给出了基于小波核的原始双支持向量机模型与传统的支持向量机模型之间的经济发展预测平均误差的比较,该模型由训练样本使用3-5维输入向量进行训练。测试结果表明,基于小波核的原始孪生支持向量机模型的经济发展预测精度优于传统的支持向量机。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2013年第9期|875392.1-875392.6|共6页
  • 作者

    Fang Su; HaiYang Shang;

  • 作者单位

    College of Economics, Lanzhou University of Technology, 287 Langongping Road, Qilihe District, Lanzhou City 730050, China;

    Lanzhou University of Finance and Economics, Gansu 730050, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号