首页> 外文期刊>Mathematical Problems in Engineering >A Hybrid Genetic Algorithm to Minimize Total Tardiness for Unrelated Parallel Machine Scheduling with Precedence Constraints
【24h】

A Hybrid Genetic Algorithm to Minimize Total Tardiness for Unrelated Parallel Machine Scheduling with Precedence Constraints

机译:具有优先约束的无关并行机器调度的总时延最小化的混合遗传算法

获取原文
获取原文并翻译 | 示例

摘要

The paper presents a novel hybrid genetic algorithm (HGA) for a deterministic scheduling problem where multiple jobs with arbitrary precedence constraints are processed on multiple unrelated parallel machines. The objective is to minimize total tardiness, since delays of the jobs may lead to punishment cost or cancellation of orders by the clients in many situations. A priority rule-based heuristic algorithm, which schedules a prior job on a prior machine according to the priority rule at each iteration, is suggested and embedded to the HGA for initial feasible schedules that can be improved in further stages. Computational experiments are conducted to show that the proposed HGA performs well with respect to accuracy and efficiency of solution for small-sized problems and gets better results than the conventional genetic algorithm within the same runtime for large-sized problems.
机译:本文提出了一种新颖的混合遗传算法(HGA),用于确定性调度问题,其中在多个不相关的并行机上处理具有任意优先级约束的多个作业。目的是最大程度地减少总拖延,因为在许多情况下延迟工作可能会导致惩罚成本或客户取消订单。提出了一种基于优先级规则的启发式算法,该算法根据每次迭代的优先级规则在优先级计算机上调度优先级作业,并将其嵌入到HGA中,以进行初始可行的调度,并可以在后续阶段进行改进。进行了计算实验,结果表明,所提出的HGA在解决小问题的精度和效率上表现良好,并且在相同的运行时间内,对于大问题的求解效果优于传统的遗传算法。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2013年第8期|537127.1-537127.11|共11页
  • 作者

    Chunfeng Liu;

  • 作者单位

    School of Management, Hangzhou Dianzi University, Hangzhou 310018, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号