首页> 外文期刊>Mathematical Problems in Engineering >Locating Impact on Structural Plate Using Principal Component Analysis and Support Vector Machines
【24h】

Locating Impact on Structural Plate Using Principal Component Analysis and Support Vector Machines

机译:主成分分析和支持向量机对结构板的冲击定位

获取原文
获取原文并翻译 | 示例

摘要

A new method which integrates principal component analysis (PCA) and support vector machines (SVM) is presented to predict the location of impact on a clamped aluminum plate structure. When the plate is knocked using an instrumented hammer, the induced time-varying strain signals are collected by four piezoelectric sensors which are mounted on the plate surface. The PCA algorithm is adopted for the dimension reduction of the large original data sets. Afterwards, a new two-layer SVM regression framework is proposed to improve the impact location accuracy. For a comparison study, the conventional backpropagation neural networks (BPNN) approach is implemented as well. Experimental results show that the proposed strategy achieves much better locating accuracy in comparison with the conventional approach.
机译:提出了一种结合主成分分析(PCA)和支持向量机(SVM)的新方法,以预测对夹紧的铝板结构的影响位置。当使用仪器锤敲打板时,感应的随时间变化的应变信号由安装在板表面上的四个压电传感器收集。采用PCA算法来减少大型原始数据集的维数。然后,提出了一种新的两层支持向量机回归框架,以提高影响位置的准确性。为了进行比较研究,还实现了传统的反向传播神经网络(BPNN)方法。实验结果表明,与传统方法相比,该方法具有更高的定位精度。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2013年第4期|352149.1-352149.8|共8页
  • 作者

    Heming Fu; Qingsong Xu;

  • 作者单位

    Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, Macau;

    Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macau;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号