首页> 外文期刊>Mathematical Problems in Engineering >Single-Dimension Perturbation Glowworm Swarm Optimization Algorithm for Block Motion Estimation
【24h】

Single-Dimension Perturbation Glowworm Swarm Optimization Algorithm for Block Motion Estimation

机译:用于块运动估计的一维摄动萤火虫群优化算法

获取原文
获取原文并翻译 | 示例

摘要

In view of the fact that the classical fast motion estimation methods are easy to fall into local optimum and suffer the high computational cost, the convergence of the motion estimation method based on the swarm intelligence algorithm is very slow. A new block motion estimation method based on single-dimension perturbation glowworm swarm optimization algorithm is proposed. Single-dimension perturbation is a local search strategy which can improve the ability of local optimization. The proposed method not only has overcome the defect of falling into local optimum easily by taking use of both the global search ability of glowworm swarm optimization algorithm and the local optimization ability of single-dimension perturbation but also has reduced the computation complexity by using motion vector predictor and terminating strategies in view of the characteristic of video images. The experimental results show that the performance of the proposed method is better than that of other motion estimation methods for most video sequences, specifically for those video sequences with violent motion, and the searching precision has been improved obviously. Although the computational complexity of the proposed method is slightly higher than that of the classical methods, it is still far lower than that of full search method.
机译:鉴于传统的快速运动估计方法容易陷入局部最优且计算成本高的事实,基于群体智能算法的运动估计方法的收敛速度很慢。提出了一种基于一维摄动萤火虫群优化算法的块运动估计新方法。一维摄动是一种局部搜索策略,可以提高局部优化的能力。不仅利用萤火虫群优化算法的全局搜索能力和一维扰动的局部优化能力,克服了容易陷入局部最优的缺点,而且利用运动矢量降低了计算复杂度。鉴于视频图像的特性,预测和终止策略。实验结果表明,对于大多数视频序列,尤其是运动剧烈的视频序列,该方法的性能优于其他运动估计方法,搜索精度得到了明显提高。尽管该方法的计算复杂度比经典方法略高,但仍远低于完全搜索方法。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2013年第15期|610230.1-610230.10|共10页
  • 作者单位

    College of Information Science and Engineering, Guangxi University for Nationalities, Nanning 530006, China;

    College of Information Science and Engineering, Guangxi University for Nationalities, Nanning 530006, China,Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis, Nanning 530006, China;

    College of Information Science and Engineering, Guangxi University for Nationalities, Nanning 530006, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号