首页> 外文期刊>Mathematical Problems in Engineering >A Novel Boundary Oversampling Algorithm Based on Neighborhood Rough Set Model: NRSBoundary-SMOTE
【24h】

A Novel Boundary Oversampling Algorithm Based on Neighborhood Rough Set Model: NRSBoundary-SMOTE

机译:基于邻域粗糙集模型的边界过采样新算法:NRSBoundary-SMOTE

获取原文
获取原文并翻译 | 示例

摘要

Rough set theory is a powerful mathematical tool introduced by Pawlak to deal with imprecise, uncertain, and vague information. The Neighborhood-Based Rough Set Model expands the rough set theory; it could divide the dataset into three parts. And the boundary region indicates that the majority class samples and the minority class samples are overlapped. On the basis of what we know about the distribution of original dataset, we only oversample the minority class samples, which are overlapped with the majority class samples, in the boundary region. So, the NRSBoundary-SMOTE can expand the decision space for the minority class; meanwhile, it will shrink the decision space for the majority class. After conducting an experiment on four kinds of classifiers, NRSBoundary-SMOTE has higher accuracy than other methods when C4.5, CART, and KNN are used but it is worse than SMOTE on classifier SVM.
机译:粗糙集理论是Pawlak引入的一种强大的数学工具,用于处理不精确,不确定和模糊的信息。基于邻域的粗糙集模型扩展了粗糙集理论。可以将数据集分为三部分。并且边界区域指示多数类别样本和少数类别样本重叠。根据我们对原始数据集分布的了解,我们仅对边界区域中与多数类样本重叠的少数类样本进行过采样。因此,NRSBoundary-SMOTE可以扩展少数群体的决策空间;同时,它将缩小多数阶级的决策空间。在对四种分类器进行了实验之后,当使用C4.5,CART和KNN时,NRSBoundary-SMOTE的准确性比其他方法高,但在分类器SVM上却比SMOTE差。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2013年第13期|694809.1-694809.10|共10页
  • 作者

    Hu Feng; Li Hang;

  • 作者单位

    Chongqing Univ Posts & Telecommun, Chongqing Key Lab Computat Intelligence, Chongqing 400065, Peoples R China.;

    Chongqing Univ Posts & Telecommun, Chongqing Key Lab Computat Intelligence, Chongqing 400065, Peoples R China.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号