首页> 外文期刊>Mathematical Problems in Engineering >Fault Tolerant Control in Redundant Inertial Navigation System
【24h】

Fault Tolerant Control in Redundant Inertial Navigation System

机译:冗余惯性导航系统的容错控制

获取原文
获取原文并翻译 | 示例

摘要

Conventional fault detection and isolation technology cannot fully ensure system redundancy features when sensors experience drift in a redundant inertial navigation system. A new fault tolerant control method employs state estimation and state feedback techniques to compensate the sensor drift. However, the method is sensitive to measurement noise characteristics, and the performance of the method nearly depends on the feedback gain. This paper proposes an improved fault tolerant control algorithm, which employs an adaptive extended Kalman particle filter (AEKPF) to deal with unknown noise characteristics and model inaccuracies. In addition, a drift factor is introduced in the improved fault tolerant controlin order to reduce the dependence of compensation system on the feedback gain. Simulation results show that the improved fault tolerant control algorithm can effectively correct the faulty sensor even when the multiple erroneous sensors are producing faulty outputs simultaneously. Meanwhile, the AEKPF is able to solve the problem of unknown non-Gaussian noise characteristics. Moreover, the feedback gain is significantly improved by the drift factor.
机译:当传感器在冗余惯性导航系统中出现漂移时,传统的故障检测和隔离技术无法完全确保系统的冗余功能。一种新的容错控制方法采用状态估计和状态反馈技术来补偿传感器漂移。然而,该方法对测量噪声特性敏感,并且该方法的性能几乎取决于反馈增益。本文提出了一种改进的容错控制算法,该算法采用自适应扩展卡尔曼粒子滤波器(AEKPF)来处理未知噪声特征和模型误差。另外,在改进的容错控制中引入了漂移因子,以减少补偿系统对反馈增益的依赖性。仿真结果表明,即使多个错误传感器同时产生故障输出,改进的容错控制算法也可以有效地纠正故障传感器。同时,AEKPF能够解决未知的非高斯噪声特性问题。此外,漂移因子可显着提高反馈增益。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2013年第11期|782617.1-782617.11|共11页
  • 作者单位

    College of Automation, Harbin Engineering University, Harbin 150001, China;

    College of Automation, Harbin Engineering University, Harbin 150001, China;

    College of Automation, Harbin Engineering University, Harbin 150001, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号