首页> 外文期刊>Mathematical Problems in Engineering >Knowledge Mining Based on Environmental Simulation Applied to Wind Farm Power Forecasting
【24h】

Knowledge Mining Based on Environmental Simulation Applied to Wind Farm Power Forecasting

机译:基于环境模拟的知识挖掘在风电场功率预测中的应用

获取原文
获取原文并翻译 | 示例

摘要

Considering the inherent variability and uncertainty of wind power generation, in this study, a self-organizing map (SOM) combined with rough set theory clustering technique (RST) is proposed to extract the relative knowledge and to choose the most similar history situation and efficient data for wind power forecasting with numerical weather prediction (NWP). Through integrating the SOM and RST methods to cluster the historical data into several classes, the approach could find the similar days and excavate the hidden rules. According to the data reprocessing, the selected samples will improve the forecast accuracy echo state network (ESN) trained by the class of the forecasting day that is adopted to forecast the wind power output accordingly. The developed methods are applied to a case of power forecasting in a wind farm located in northwest of China with wind power data from April 1,2008, to May 6,2009. In order to verify its effectiveness, the performance of the proposed method is compared with the traditional backpropagation neural network (BP). The results demonstrated that knowledge mining led to a promising improvement in the performance for wind farm power forecasting.
机译:考虑到风力发电的固有可变性和不确定性,本研究提出了一种结合粗糙集理论聚类技术(RST)的自组织图(SOM)来提取相关知识并选择最相似的历史情况和有效的方法。具有数值天气预报(NWP)的风电预测数据。通过集成SOM和RST方法将历史数据聚类为几个类,该方法可以找到相似的日子并挖掘隐藏的规则。根据数据的重新处理,所选样本将改善通过采用预测日类别来训练的预测准确性回波状态网络(ESN),该预测日相应地用于预测风电输出。所开发的方法适用于具有从2008年4月1日到2009年5月6日的风力数据的中国西北风电场的电力预测案例。为了验证其有效性,将该方法的性能与传统的反向传播神经网络(BP)进行了比较。结果表明,知识挖掘导致风电场功率预测性能的改善。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2013年第10期|597562.1-597562.8|共8页
  • 作者单位

    Research Institute of Technology Economics Forecasting and Assessment, School of Economics and Management, North China Electric Power University, Beijing 102206, China;

    Research Institute of Technology Economics Forecasting and Assessment, School of Economics and Management, North China Electric Power University, Beijing 102206, China;

    School of Management, Zhejiang University, Hangzhou 310058, China;

    MOE Key Laboratory of Regional Energy Systems Optimization, S&C Academy of Energy and Environmental Research, North China Electric Power University, Beijing 102206, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号