首页> 外文期刊>Mathematical Problems in Engineering >Construction of Interval Shannon Wavelet and Its Application in Solving Nonlinear Black-Scholes Equation
【24h】

Construction of Interval Shannon Wavelet and Its Application in Solving Nonlinear Black-Scholes Equation

机译:区间Shannon小波的构造及其在求解非线性Black-Scholes方程中的应用

获取原文
获取原文并翻译 | 示例

摘要

Interval wavelet numerical method for nonlinear PDEs can improve the calculation precision compared with the common wavelet. A new interval Shannon wavelet is constructed with the general variational principle. Compared with the existing interval wavelet, both the gradient and the smoothness near the boundary of the approximated function are taken into account. Using the new interval Shannon wavelet, a multiscale interpolation wavelet operator was constructed in this paper, which can transform the nonlinear partial differential equations into matrix differential equations; this can be solved by the coupling technique of the wavelet precise integration method (WPIM) and the variational iteration method (VIM). At last, the famous Black-Scholes model is taken as an example to test this new method. The numerical results show that this method can decrease the boundary effect greatly and improve the numerical precision in the whole definition domain compared with Yan's method.
机译:与普通小波相比,非线性PDE的区间小波数值方法可以提高计算精度。利用一般变分原理构造了一个新的区间香农小波。与现有的区间小波相比,考虑了近似函数边界附近的梯度和平滑度。利用新的区间香农小波,构造了一种多尺度插值小波算子,可以将非线性偏微分方程转化为矩阵微分方程。这可以通过小波精确积分法(WPIM)和变分迭代法(VIM)的耦合技术来解决。最后,以著名的Black-Scholes模型为例对该新方法进行了测试。数值结果表明,与Yan方法相比,该方法可以大大减小边界效应,提高了整个定义域的数值精度。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2014年第3期|541023.1-541023.9|共9页
  • 作者

    Liwei Liu;

  • 作者单位

    Mechanical Engineering Department, North China Institute of Aerospace Engineering 133 Aimin East Road, Langfang, Hebei 065000, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号