首页> 外文期刊>Mathematical Problems in Engineering >A Support Vector Data Description Committee for Face Detection
【24h】

A Support Vector Data Description Committee for Face Detection

机译:支持向量数据描述委员会,用于人脸检测

获取原文
获取原文并翻译 | 示例

摘要

Face detection is a crucial prestage for face recognition and is often treated as a binary (face and nonface) classification problem. While this strategy is simple to implement, face detection accuracy would drop when nonface training patterns are undersampled. To avoid these problems, we propose in this paper a one-class learning-based face detector called support vector data description (SVDD) committee, which consists of several SVDD members, each of which is trained on a subset of face patterns. Nonfaces are not required in the training of the SVDD committee. Therefore, the face detection accuracy of SVDD committee is independent of the nonface training patterns. Moreover, the proposed SVDD committee is also able to improve generalization ability of the original SVDD when the face data set has a multiduster distribution. Experiments carried out on the extended MIT face data set show that the proposed SVDD committee can achieve better face detection accuracy than the widely used SVM face detector and performs better than other one-class classifiers, including the original SVDD and the kernel principal component analysis (Kernel PCA).
机译:人脸检测是人脸识别的关键前提,通常被视为二元(人脸和非人脸)分类问题。尽管该策略易于实施,但是当对非面部训练模式进行欠采样时,面部检测的准确性将会下降。为了避免这些问题,我们在本文中提出一种基于学习的一类人脸检测器,称为支持向量数据描述(SVDD)委员会,该委员会由几个SVDD成员组成,每个成员都在人脸模式的一个子集上进行训练。在SVDD委员会的培训中,不需要露脸。因此,SVDD委员会的面部检测精度与非面部训练模式无关。此外,当面部数据集具有多粉尘分布时,建议的SVDD委员会还能够提高原始SVDD的泛化能力。对扩展的MIT人脸数据集进行的实验表明,与广泛使用的SVM人脸检测器相比,拟议的SVDD委员会可以实现更好的人脸检测精度,并且比其他一类分类器(包括原始SVDD和内核主成分分析(内核PCA)。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2014年第3期|478482.1-478482.9|共9页
  • 作者单位

    Department of Mechanical Engineering, Chung Yuan Christian University, Chungli 320, Taiwan;

    Department of Mechanical Engineering, Chung Yuan Christian University, Chungli 320, Taiwan;

    Institute of Nuclear Energy Research, Atomic Energy Council Taoyuan 325, Taiwan;

    Institute of Nuclear Energy Research, Atomic Energy Council Taoyuan 325, Taiwan;

    Institute of Nuclear Energy Research, Atomic Energy Council Taoyuan 325, Taiwan;

    Department of Electrical Engineering, National Taiwan Ocean University, Keelung 200, Taiwan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号