首页> 外文期刊>Mathematical Problems in Engineering >Numerical Investigations of the Effect of Nonlinear Quadratic Pressure Gradient Term on a Moving Boundary Problem of Radial Flow in Low-Permeable Reservoirs with Threshold Pressure Gradient
【24h】

Numerical Investigations of the Effect of Nonlinear Quadratic Pressure Gradient Term on a Moving Boundary Problem of Radial Flow in Low-Permeable Reservoirs with Threshold Pressure Gradient

机译:非线性二次压力梯度项对阈值压力梯度低渗透油藏径向流运动边界问题影响的数值研究

获取原文
获取原文并翻译 | 示例

摘要

The existence of a TPG can generate a relatively high pressure gradient in the process of fluid flow in porous media in low-permeable reservoirs, and neglecting the QPGTs in the governing equations, by assuming a small pressure gradient for such a problem, can cause a significant error in predicting the formation pressure. Based on these concerns, in consideration of the QPGT, a moving boundary model of radial flow in low-permeable reservoirs with the TPG for the case of a constant flow rate at the inner boundary is constructed. Due to strong nonlinearity of the mathematical model, a numerical method is presented: the system of partial differential equations for the moving boundary problem is first transformed equivalently into a closed system of partial differential equations with fixed boundary conditions by a spatial coordinate transformation method; and then a stable, fully implicit finite difference method is used to obtain its numerical solution. Numerical result analysis shows that the mathematical models of radial flow in low-permeable reservoirs with TPG must take the QPGT into account in their governing equations, which is more important than those of Darcy's flow; the sensitive effects of the QPGT for the radial flow model do not change with an increase of the dimensionless TPG.
机译:TPG的存在会在低渗透性油藏中的多孔介质中的流体流动过程中产生相对较高的压力梯度,并且通过假设该问题的压力梯度较小,而忽略控制方程中的QPGT可能会导致预测地层压力时存在重大误差。基于这些考虑,考虑到QPGT,在内边界流量恒定的情况下,构造了带有TPG的低渗透油藏径向流的移动边界模型。由于数学模型具有很强的非线性性,提出了一种数值方法:首先,通过空间坐标变换方法将运动边界问题的偏微分方程组等效转换为边界条件固定的偏微分方程的封闭系统。然后使用稳定的,完全隐式的有限差分方法获得其数值解。数值结果分析表明,含TPG的低渗透油藏径向流数学模型必须在其控制方程中考虑QPGT,这比达西渗流更重要。 QPGT对径向流模型的敏感效果不会随着无量纲TPG的增加而改变。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2015年第6期|275057.1-275057.12|共12页
  • 作者

    Liu Wenchao; Yao Jun;

  • 作者单位

    Chinese Acad Sci, Inst Mech, Beijing 100190, Peoples R China.;

    China Univ Petr Huadong, Sch Petr Engn, Qingdao 266580, Peoples R China.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号