首页> 外文期刊>Mathematical Problems in Engineering >Model to Estimate Monthly Time Horizons for Application of DEA in Selection of Stock Portfolio and for Maintenance of the Selected Portfolio
【24h】

Model to Estimate Monthly Time Horizons for Application of DEA in Selection of Stock Portfolio and for Maintenance of the Selected Portfolio

机译:用于估计DEA在股票投资组合选择和维护选定投资组合中的每月时间范围的模型

获取原文
获取原文并翻译 | 示例

摘要

In the selecting of stock portfolios, one type of analysis that has shown good results is Data Envelopment Analysis (DEA). It, however, has been shown to have gaps regarding its estimates of monthly time horizons of data collection for the selection of stock portfolios and of monthly time horizons for the maintenance of a selected portfolio. To better estimate these horizons, this study proposes a model of mathematical programming binary of minimization of square errors. This model is the paper's main contribution. The model's results are validated by simulating the estimated annual return indexes of a portfolio that uses both horizons estimated and of other portfolios that do not use these horizons. The simulation shows that portfolios with both horizons estimated have higher indexes, on average 6.99% per year. The hypothesis tests confirm the statistically significant superiority of the results of the proposed mathematical model's indexes. The model's indexes are also compared with portfolios that use just one of the horizons estimated; here the indexes of the dual-horizon portfolios outperform the single-horizon portfolios, though with a decrease in percentage of statistically significant superiority.
机译:在选择股票投资组合中,一种显示出良好效果的分析类型是数据包络分析(DEA)。然而,事实证明,它在选择股票投资组合的数据收集的每月时间范围和维持选定投资组合的每月时间范围的估计方面存在差距。为了更好地估计这些视域,本研究提出了一个最小化平方误差的数学编程二进制模型。该模型是本文的主要贡献。该模型的结果通过模拟既使用估计范围的投资组合的估计年度回报指数,也使用不使用这些范围的其他投资组合的估计年度回报指数进行验证。模拟显示,同时评估了这两个范围的投资组合具有更高的指数,平均每年为6.99%。假设检验证实了所提出的数学模型的指标结果在统计上具有优越性。该模型的指数也与仅使用估计范围之一的投资组合进行了比较。在这里,双水平投资组合的指数优于单水平投资组合,尽管统计上具有优势的百分比有所下降。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号