首页> 外文期刊>Mathematical Problems in Engineering >An Analysis and Application of Fast Nonnegative Orthogonal Matching Pursuit for Image Categorization in Deep Networks
【24h】

An Analysis and Application of Fast Nonnegative Orthogonal Matching Pursuit for Image Categorization in Deep Networks

机译:深度网络中快速非负正交匹配追踪在图像分类中的分析与应用

获取原文
获取原文并翻译 | 示例

摘要

Nonnegative orthogonal matching pursuit (NOMP) has been proven to be a more stable encoder for unsupervised sparse representation learning. However, previous research has shown that NOMP is suboptimal in terms of computational cost, as the coefficients selection and refinement using nonnegative least squares (NNLS) have been divided into two separate steps. It is found that this problem severely reduces the efficiency of encoding for large-scale image patches. In this work, we study fast nonnegative OMP (FNOMP) as an efficient encoder which can be accelerated by the implementation of QR. factorization and iterations of coefficients in deep networks for full-size image categorization task. It is analyzed and demonstrated that using relatively simple gain-shape vector quantization for training dictionary, FNOMP not only performs more efficiently than NOMP for encoding but also significantly improves the classification accuracy compared to OMP based algorithm. In addition, FNOMP based algorithm is superior to other state-of-the-art methods on several publicly available benchmarks, that is, Oxford Flowers, UIUC-Sports, and Caltech101.
机译:非负正交匹配追踪(NOMP)已被证明是用于无监督稀疏表示学习的更稳定的编码器。但是,先前的研究表明,由于使用非负最小二乘(NNLS)进行系数选择和细化已分为两个单独的步骤,因此NOMP在计算成本方面次优。已经发现,该问题严重降低了针对大规模图像补丁的编码效率。在这项工作中,我们研究快速非负OMP(FNOMP)作为可以通过QR的实施而加速的有效编码器。在全尺寸图像分类任务中,对深层网络进行系数分解和系数迭代。分析和证明,与基于OMP的算法相比,使用相对简单的增益形状矢量量化进行训练的字典,FNOMP不仅比NOMP编码更有效,而且显着提高了分类精度。此外,基于FNOMP的算法在几种公开可用的基准(牛津花朵,UIUC-Sports和Caltech101)上优于其他最新方法。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2015年第12期|180675.1-180675.9|共9页
  • 作者

    Wang Bo; Guo Jichang; Zhang Yan;

  • 作者单位

    Tianjin Univ, Sch Elect Informat Engn, Tianjin 300072, Peoples R China.;

    Tianjin Univ, Sch Elect Informat Engn, Tianjin 300072, Peoples R China.;

    Tianjin Univ, Sch Elect Informat Engn, Tianjin 300072, Peoples R China.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号