首页> 外文期刊>Mathematical Problems in Engineering >A Hierarchical Load Balancing Strategy Considering Communication Delay Overhead for Large Distributed Computing Systems
【24h】

A Hierarchical Load Balancing Strategy Considering Communication Delay Overhead for Large Distributed Computing Systems

机译:大型分布式计算系统考虑通信延迟开销的分层负载均衡策略

获取原文
获取原文并翻译 | 示例

摘要

Load balancing technology can effectively exploit potential enormous compute power available on distributed systems and achieve scalability. Communication delay overhead on distributed system, which is time-varying and is usually ignored or assumed to be deterministic for traditional load balancing strategies, can greatly degrade the load balancing performance. Considering communication delay overhead and its time-varying feature, a hierarchical load balancing strategy based on generalized neural network (HLBSGNN) is presented for large distributed systems. The novelty of the HLBSGNN is threefold: (1) the hierarchy with optimized communication is employed to reduce load balancing overhead for large distributed computing systems, (2) node computation rate and communication delay randomness imposed by the communication medium are considered, and (3) communication and migration overheads are optimized via forecasting delay. Comparisons with traditional strategies, such as centralized, distributed, and random delay strategies, indicate that the HLBSGNN is more effective and efficient.
机译:负载平衡技术可以有效地利用分布式系统上潜在的巨大计算能力并实现可伸缩性。分布式系统上的通信延迟开销是随时间变化的,通常对于传统的负载平衡策略而言是忽略不计的或被认为是确定性的,这会大大降低负载平衡性能。考虑通信延迟开销及其时变特性,针对大型分布式系统,提出了一种基于广义神经网络(HLBSGNN)的分层负载均衡策略。 HLBSGNN的新颖性有三方面:(1)采用优化通信的层次结构来减少大型分布式计算系统的负载平衡开销,(2)考虑通信介质施加的节点计算速率和通信延迟随机性,以及(3) )通信和迁移开销通过预测延迟得以优化。与传统策略(例如集中式,分布式和随机延迟策略)的比较表明,HLBSGNN更有效。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2016年第4期|5641831.1-5641831.9|共9页
  • 作者单位

    Chongqing Jiaotong Univ, Sch Math & Stat, Chongqing 400074, Peoples R China;

    Chongqing Jiaotong Univ, Sch Mat Sci & Engn, Chongqing 400074, Peoples R China;

    Hebei Normal Univ Sci & Technol, Coll Business Adm, Qinhuangdao 066004, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号