首页> 外文期刊>Mathematical Problems in Engineering >Clustering Services Based on Community Detection in Service Networks
【24h】

Clustering Services Based on Community Detection in Service Networks

机译:基于社区检测的服务网络中的聚类服务

获取原文
获取原文并翻译 | 示例

摘要

Service-oriented computing has become a promising way to develop software by composing existing services on the Internet. However, with the increasing number of services on the Internet, how to match requirements and services becomes a difficult problem. Service clustering has been regarded as one of the effective ways to improve service matching. Related work shows that structure-related similarity metrics perform better than semantic-related similarity metrics in clustering services. Therefore, it is of great importance to propose much more useful structure-related similarity metrics to improve the performance of service clustering approaches. However, in the existing work, this kind of work is very rare. In this paper, we propose a SCAS (service clustering approach using structural metrics) to group services into different clusters. SCAS proposes a novel metric A2S (atomic service similarity) to characterize the atomic service similarity as a whole, which is a linear combination of C2S (composite-sharing similarity) and A3S (atomic-service-sharing similarity). Then, SCAS applies a guided community detection algorithm to group atomic services into clusters. Experimental results on a real-world data set show that our SCAS performs better than the existing approaches. Our A2S metric is promising in improving the performance of service clustering approaches.
机译:面向服务的计算已成为通过在互联网上撰写现有服务来开发软件的有希望的方式。但是,随着互联网上越来越多的服务,如何匹配要求和服务成为一个难题。服务聚类已被视为改善服务匹配的有效方法之一。相关工作表明,结构相关的相似性度量比聚类服务中的语义相关的相似度量更好地执行。因此,提出更有用的结构相关的相似度量是非常重要的,以提高服务聚类方法的性能。但是,在现有的工作中,这种工作非常罕见。在本文中,我们提出了一种SCAS(使用结构指标)将服务分组到不同的集群中。 SCA提出了一种新的公制A2S(原子服务相似性),以表征整体的原子服务相似性,这是C2S(复合共享相似性)和A3S(原子服务共享相似性)的线性组合。然后,SCA将引导的社区检测算法应用于将原子服务分组到集群中。实验结果对真实世界的数据集表明,我们的SCA比现有方法更好。我们的A2S指标在提高服务聚类方法的性能方面很有希望。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2019年第24期|1495676.1-1495676.11|共11页
  • 作者

    Zhou Shiyuan; Wang Yinglin;

  • 作者单位

    Shanghai Univ Finance & Econ Sch Informat Management & Engn Shanghai 200433 Peoples R China|Jiaxing Univ Jiaxing 314001 Peoples R China;

    Shanghai Univ Finance & Econ Sch Informat Management & Engn Shanghai 200433 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号