首页> 外文期刊>Mathematical Problems in Engineering >Analytical Solution for Electrical Problem Forced by a Finite-Length Needle Electrode: Implications in Electrostimulation
【24h】

Analytical Solution for Electrical Problem Forced by a Finite-Length Needle Electrode: Implications in Electrostimulation

机译:由有限长针电极强制电气问题的分析解决方案:电动刺激中的含义

获取原文
获取原文并翻译 | 示例

摘要

Needle electrodes, widely used in clinical procedures, are responsible for creating an electric field in the treated biological tissue. This is achieved by setting a constant voltage along the length of their metallic section. In accordance with Laplace's equation, the electric field is spatially non-uniform around the electrode surface. Mathematical modelling can provide useful information on the spatial distribution of electrical fields. Indeed, exact solutions for the electrical problem are indispensable for validating numerical codes. All the analytical models developed to date to solve the needle electrode electrical problem have been one-dimensional models, which assumed an electrode of infinite length. We here propose the first analytical solution based on a two-dimensional model that considers the real length of the electrode in which the Laplace equation is solved through the method of separation of variables, dealing with the nonhomogeneous source term and boundary conditions by Green's functions. On assuming a needle electrode of given length, the problem combines boundary conditions on the electrode boundary (of the first and second kind). Since this rules out using the Sturm-Liouville Theorem, the problem is decomposed into two different problems and the principle of superposition is used. The solution obtained can reproduce a reasonable electric field around the electrode, especially the edge effect characterized by an extremely high gradient around the electrode tip.
机译:针电极广泛用于临床手术,负责在经处理的生物组织中产生电场。这是通过沿着金属部分的长度设定恒定电压来实现的。根据拉普拉斯的等式,电场在电极表面周围空间不均匀。数学建模可以提供关于电场的空间分布的有用信息。实际上,用于电气问题的精确解决方案对于验证数值代码是必不可少的。迄今为止若干迄今为止求解针电极的所有分析模型都是一直型号,其假设无限长度的电极。我们在这里提出了一种基于二维模型的第一分析解决方案,其考虑通过分离的方法来解决拉普拉斯方程的实际长度,通过绿色的功能处理非均匀源期限和边界条件。假设给定长度的针电极,问题结合了电极边界(第一和第二类)上的边界条件。由于这种规定使用Sturm-Liouville定理,因此问题分解为两个不同的问题,使用叠加原理。所获得的溶液可以在电极周围再现合理的电场,尤其是通过电极尖端周围的极高梯度表征的边缘效应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号