首页> 外文期刊>Mathematical Problems in Engineering >Signal Denoising Method Based on Adaptive Redundant Second-Generation Wavelet for Rotating Machinery Fault Diagnosis
【24h】

Signal Denoising Method Based on Adaptive Redundant Second-Generation Wavelet for Rotating Machinery Fault Diagnosis

机译:基于自适应冗余第二代小波的旋转机械故障诊断信号降噪方法

获取原文
获取原文并翻译 | 示例

摘要

Vibration signal of rotating machinery is often submerged in a large amount of noise, leading to the decrease of fault diagnosis accuracy. In order to improve the denoising effect of the vibration signal, an adaptive redundant second-generation wavelet (ARSGW) denoising method is proposed. In this method, a new index for denoising result evaluation (IDRE) is constructed first. Then, the maximum value of IDRE and the genetic algorithm are taken as the optimization objective and the optimization algorithm, respectively, to search for the optimal parameters of the ARSGW. The obtained optimal redundant second-generation wavelet (RSGW) is used for vibration signal denoising. After that, features are extracted from the denoised signal and then input into the support vector machine method for fault recognition. The application result indicates that the proposed ARSGW denoising method can effectively improve the accuracy of rotating machinery fault diagnosis.
机译:旋转机械的振动信号经常被淹没在大量噪声中,导致故障诊断的准确性下降。为了提高振动信号的去噪效果,提出了一种自适应冗余第二代小波(ARSGW)去噪方法。在这种方法中,首先构造用于降噪结果评估的新索引(IDRE)。然后,以IDRE的最大值和遗传算法分别为优化目标和优化算法,寻找ARSGW的最优参数。将获得的最优冗余第二代小波(RSGW)用于振动信号降噪。之后,从降噪信号中提取特征,然后将其输入支持向量机方法中进行故障识别。应用结果表明,提出的ARSGW去噪方法可以有效提高旋转机械故障诊断的准确性。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2016年第10期|2727684.1-2727684.10|共10页
  • 作者单位

    Zhengzhou Univ, Sch Water Conservancy & Environm, Zhengzhou 450000, Peoples R China;

    Henan Elect Power Res Inst, Zhengzhou 450000, Peoples R China;

    Wuhan Univ, Sch Power & Mech Engn, Wuhan 430072, Peoples R China;

    Northwest A&F Univ, Coll Water Resources & Architectural Engn, Yangling 712100, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号