首页> 外文期刊>Mathematical Problems in Engineering >l(1)- and l(2)-Norm Joint Regularization Based Sparse Signal Reconstruction Scheme
【24h】

l(1)- and l(2)-Norm Joint Regularization Based Sparse Signal Reconstruction Scheme

机译:基于l(1)-和l(2)-范数联合正则化的稀疏信号重建方案

获取原文
获取原文并翻译 | 示例

摘要

Many problems in signal processing and statistical inference involve finding sparse solution to some underdetermined linear system of equations. This is also the application condition of compressive sensing (CS) which can find the sparse solution from the measurements far less than the original signal. In this paper, we propose l(1)-and l(2)-norm joint regularization based reconstruction framework to approach the original l(0)-norm based sparseness-inducing constrained sparse signal reconstruction problem. Firstly, it is shown that, by employing the simple conjugate gradient algorithm, the new formulation provides an effective framework to deduce the solution as the original sparse signal reconstruction problem with l(0)-norm regularization item. Secondly, the upper reconstruction error limit is presented for the proposed sparse signal reconstruction framework, and it is unveiled that a smaller reconstruction error than l(1)-norm relaxation approaches can be realized by using the proposed scheme in most cases. Finally, simulation results are presented to validate the proposed sparse signal reconstruction approach.
机译:信号处理和统计推断中的许多问题涉及找到某些欠定线性方程组的稀疏解。这也是压缩感测(CS)的应用条件,它可以从测量中找到稀疏解,远小于原始信号。在本文中,我们提出了基于l(1)和l(2)-范数联合正则化的重构框架,以解决原始的基于l(0)-norm的稀疏诱导约束的稀疏信号重构问题。首先,证明了通过采用简单的共轭梯度算法,该新公式提供了一个有效的框架来推导该解为具有l(0)-范数正则项的原始稀疏信号重构问题。其次,提出了所提出的稀疏信号重构框架的重构误差上限,并且揭示了在大多数情况下,通过使用所提出的方案,可以实现比l(1)-范数松弛方法小的重构误差。最后,通过仿真结果验证了所提出的稀疏信号重构方法的有效性。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2016年第10期|3567095.1-3567095.11|共11页
  • 作者单位

    Southwest Jiaotong Univ, Chengdu 610031, Sichuan, Peoples R China;

    Southwest Jiaotong Univ, Chengdu 610031, Sichuan, Peoples R China;

    Southwest Jiaotong Univ, Chengdu 610031, Sichuan, Peoples R China;

    Southwest Jiaotong Univ, Chengdu 610031, Sichuan, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号