首页> 外文期刊>Mathematical Problems in Engineering >Fix-and-Optimize and Variable Neighborhood Search Approaches for Stochastic Multi-Item Capacitated Lot-Sizing Problems
【24h】

Fix-and-Optimize and Variable Neighborhood Search Approaches for Stochastic Multi-Item Capacitated Lot-Sizing Problems

机译:随机多项目容量批量问题的固定和优化和可变邻域搜索方法

获取原文
获取原文并翻译 | 示例

摘要

We discuss stochastic multi-item capacitated lot-sizing problems with and without setup carryovers (also known as link lot size), S-MICLSP and S-MICLSP-L. The two models are motivated from a real-world steel enterprise. To overcome the nonlinearity of the models, a piecewise linear approximation method is proposed. We develop a new fix-and-optimize (FO) approach to solve the approximated models. Compared with the existing FO approach(es), our FO is based on the concept of "k-degreeconnection" for decomposing the problems. Furthermore, we also propose an integrative approach combining our FO and variable neighborhood search (FO-VNS), which can improve the solution quality of our FO approach by diversifying the search space. Numerical experiments are performed on the instances following the nature of realistic steel products. Our approximationmethod is shown to be efficient. The results also show that the proposed FO and FO-VNS approaches significantly outperform the recent FO approaches, and the FO-VNS approaches can be more outstanding on the solution quality with moderate computational effort.
机译:我们讨论带有和不带有设置结转(也称为链接批量),S-MICLSP和S-MICLSP-L的随机多项目容量批量问题。这两种模型均来自真实的钢铁企业。为了克服模型的非线性,提出了一种分段线性逼近方法。我们开发了一种新的修正和优化(FO)方法来解决近似模型。与现有的FO方法相比,我们的FO基于“ k度连接”的概念来分解问题。此外,我们还提出了一种将FO和可变邻域搜索(FO-VNS)相结合的集成方法,该方法可以通过使搜索空间多样化来提高FO方法的解决方案质量。根据实际钢铁产品的性质对实例进行了数值实验。我们的近似方法被证明是有效的。结果还表明,所提出的FO和FO-VNS方法明显优于最近的FO方法,并且FO-VNS方法在解决方案质量上可以通过适度的计算工作而更加出色。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2017年第2017期|7209303.1-7209303.18|共18页
  • 作者单位

    Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China;

    Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China;

    Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China;

    Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China|Mil Transportat Univ, Dept Basic Sci, Tianjin 300161, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号