首页> 外文期刊>Mathematical Problems in Engineering >A Single Image Dehazing Method Using Average Saturation Prior
【24h】

A Single Image Dehazing Method Using Average Saturation Prior

机译:使用平均饱和度先验的单图像去雾方法

获取原文
获取原文并翻译 | 示例

摘要

Outdoor images captured in bad weather are prone to yield poor visibility, which is a fatal problem for most computer vision applications. The majority of existing dehazing methods rely on an atmospheric scattering model and therefore share a common limitation; that is, the model is only valid when the atmosphere is homogeneous. In this paper, we propose an improved atmospheric scattering model to overcome this inherent limitation. By adopting the proposed model, a corresponding dehazing method is also presented. In this method, we first create a haze density distribution map of a hazy image, which enables us to segment the hazy image into scenes according to the haze density similarity. Then, in order to improve the atmospheric light estimation accuracy, we define an effective weight assignment function to locate a candidate scene based on the scene segmentation results and therefore avoid most potential errors. Next, we propose a simple but powerful prior named the average saturation prior (ASP), which is a statistic of extensive high-definition outdoor images. Using this prior combined with the improved atmospheric scattering model, we can directly estimate the scene atmospheric scattering coefficient and restore the scene albedo. The experimental results verify that our model is physically valid, and the proposed method outperforms several state-of-the-art single image dehazing methods in terms of both robustness and effectiveness.
机译:在恶劣天气下捕获的室外图像容易产生较差的可见度,这对于大多数计算机视觉应用而言是致命的问题。现有的大多数除雾方法都依赖于大气散射模型,因此有一个共同的局限性。也就是说,该模型仅在大气均匀的情况下有效。在本文中,我们提出了一种改进的大气散射模型来克服这一固有局限性。通过采用提出的模型,还提出了相应的除雾方法。在这种方法中,我们首先创建雾度图像的雾度密度分布图,这使我们能够根据雾度密度相似度将雾度图像分割成场景。然后,为了提高大气光估计的准确性,我们定义了有效的权重分配函数,以基于场景分割结果来定位候选场景,从而避免了大多数潜在的错误。接下来,我们提出一个简单但功能强大的优先级,称为平均饱和度优先级(ASP),它是大量高清户外图像的统计信息。使用该先验与改进的大气散射模型相结合,我们可以直接估计场景大气散射系数并恢复场景反照率。实验结果证明我们的模型在物理上是有效的,并且在鲁棒性和有效性方面,该方法均优于几种最新的单图像去雾方法。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2017年第2017期|6851301.1-6851301.17|共17页
  • 作者单位

    Nanjing Univ Posts & Telecommun, Sch Internet Things, Nanjing, Jiangsu, Peoples R China|Nanjing Coll Informat Technol, Nanjing, Jiangsu, Peoples R China;

    Nanjing Univ Posts & Telecommun, Sch Internet Things, Nanjing, Jiangsu, Peoples R China;

    Nanjing Univ Posts & Telecommun, Sch Internet Things, Nanjing, Jiangsu, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号