首页> 外文期刊>Mathematical Problems in Engineering >A Method for Recognizing Fatigue Driving Based on Dempster-Shafer Theory and Fuzzy Neural Network
【24h】

A Method for Recognizing Fatigue Driving Based on Dempster-Shafer Theory and Fuzzy Neural Network

机译:基于Dempster-Shafer理论和模糊神经网络的疲劳驾驶识别方法

获取原文
获取原文并翻译 | 示例

摘要

This study proposes a method based on Dempster-Shafer theory (DST) and fuzzy neural network (FNN) to improve the reliability of recognizing fatigue driving. This method measures driving states using multifeature fusion. First, FNNis introduced to obtain the basic probability assignment (BPA) of each piece of evidence given the lack of a general solution to the definition of BPA function. Second, a modified algorithm that revises conflict evidence is proposed to reduce unreasonable fusion results when unreliable information exists. Finally, the recognition result is given according to the combination of revised evidence based on Dempster's rule. Experiment results demonstrate that the recognition method proposed in this paper can obtain reasonable results with the combination of information given by multiple features. The proposed method can also effectively and accurately describe driving states.
机译:本研究提出了一种基于Dempster-Shafer理论(DST)和模糊神经网络(FNN)的方法,以提高识别疲劳驾驶的可靠性。该方法使用多特征融合来测量行驶状态。首先,由于缺乏对BPA函数定义的通用解决方案,因此引入FNN来获取每条证据的基本概率分配(BPA)。其次,提出了一种修正冲突证据的改进算法,以减少存在不可靠信息时的不合理融合结果。最后,根据基于Dempster法则的修正证据的组合给出识别结果。实验结果表明,本文提出的识别方法能够结合多种特征给出的信息,获得合理的识别结果。所提出的方法还可以有效且准确地描述驾驶状态。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2017年第2017期|6191035.1-6191035.10|共10页
  • 作者单位

    Anhui Polytech Univ, Anhui Prov Key Lab Elect & Control, Wuhu 241000, Peoples R China;

    Anhui Polytech Univ, Anhui Prov Key Lab Elect & Control, Wuhu 241000, Peoples R China;

    Univ Sci & Technol China, Dept Precis Machinery & Precis Instrumentat, Hefei 230027, Peoples R China;

    Anhui Polytech Univ, Anhui Prov Key Lab Elect & Control, Wuhu 241000, Peoples R China|Univ Sci & Technol China, Dept Precis Machinery & Precis Instrumentat, Hefei 230027, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号