首页> 外文期刊>Mathematical Problems in Engineering >Ant Colony Optimization Algorithm to Dynamic Energy Management in Cloud Data Center
【24h】

Ant Colony Optimization Algorithm to Dynamic Energy Management in Cloud Data Center

机译:云数据中心动态能源管理的蚁群优化算法

获取原文
获取原文并翻译 | 示例

摘要

With the wide deployment of cloud computing data centers, the problems of power consumption have become increasingly prominent. The dynamic energy management problem in pursuit of energy-efficiency in cloud data centers is investigated. Specifically, a dynamic energy management system model for cloud data centers is built, and this system is composed of DVS Management Module, Load Balancing Module, and Task Scheduling Module. According to Task Scheduling Module, the scheduling process is analyzed by Stochastic Petri Net, and a task-oriented resource allocation method (LET-ACO) is proposed, which optimizes the running time of the system and the energy consumption by scheduling tasks. Simulation studies confirm the effectiveness of the proposed system model. And the simulation results also show that, compared to ACO, Min-Min, and RR scheduling strategy, the proposed LET-ACO method can save up to 28%, 31%, and 40% energy consumption while meeting performance constraints.
机译:随着云计算数据中心的广泛部署,功耗问题变得越来越突出。研究了在云数据中心中追求能源效率的动态能源管理问题。具体来说,建立了用于云数据中心的动态能源管理系统模型,该系统由DVS管理模块,负载平衡模块和任务调度模块组成。根据任务调度模块,通过随机Petri网对调度过程进行分析,提出了一种面向任务的资源分配方法(LET-ACO),通过调度任务来优化系统的运行时间和能耗。仿真研究证实了所提出系统模型的有效性。仿真结果还表明,与ACO,Min-Min和RR调度策略相比,所提出的LET-ACO方法可以在满足性能约束的同时节省多达28%,31%和40%的能耗。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2017年第12期|4810514.1-4810514.10|共10页
  • 作者单位

    China Univ Petr East China, Coll Comp & Commun Engn, Qingdao 266580, Shandong, Peoples R China;

    China Univ Petr East China, Coll Comp & Commun Engn, Qingdao 266580, Shandong, Peoples R China;

    China Univ Petr East China, Coll Comp & Commun Engn, Qingdao 266580, Shandong, Peoples R China;

    China Univ Petr East China, Coll Comp & Commun Engn, Qingdao 266580, Shandong, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号