首页> 外文期刊>Mathematical Problems in Engineering >Topology: A Theory of a Pseudometric-Based Clustering Model and Its Application in Content-Based Image Retrieval
【24h】

Topology: A Theory of a Pseudometric-Based Clustering Model and Its Application in Content-Based Image Retrieval

机译:拓扑:基于伪计量学的聚类模型的理论及其在基于内容的图像检索中的应用

获取原文
获取原文并翻译 | 示例

摘要

The clustering problem has been extensively studied over the last 50 years; however, it still has the attention of researchers. This paper presents a topological basis of a pseudometric-based clustering model which takes into account the local and global topological properties of the data to be clustered, as per the definition of homogeneity measurement. The proposed approach takes into account the homogeneity effect produced when a new particle is added to a group. The additional element can be accumulated in the group if its local homogeneity is not altered and, therefore, it is not necessary to carry out tests in another group. A new group needs to be generated if the threshold of the local homogeneity of the group exceeds. Theoretical results, their implementation, and their application to the problem of Content Based Image Retrieval (CBIR) are presented. The tests were performed using three image databases widely used in the literature, which are Vogel and Shiele, Oliva and Torralba, and L. Fei- Fei, R. Fergus and P. Perona. The results are presented and compared with the most competitive methods available in the literature.
机译:在过去的50年中,对聚类问题进行了广泛的研究。但是,它仍然引起研究人员的注意。本文介绍了基于伪度量的聚类模型的拓扑基础,该模型根据均匀性度量的定义,考虑了要聚类数据的局部和全局拓扑特性。提出的方法考虑了将新粒子添加到组中时产生的均匀性效应。如果其他元素的局部均一性未更改,则可以在该组中累积该元素,因此,不必在另一组中进行测试。如果组的本地同质性阈值超过,则需要生成一个新组。介绍了理论结果,其实现及其在基于内容的图像检索(CBIR)问题中的应用。使用文献中广泛使用的三个图像数据库执行测试,分别是Vogel和Shiele,Oliva和Torralba,以及L. Fei-Fei,R。Fergus和P. Perona。给出结果并与文献中最有竞争力的方法进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号