首页> 外文期刊>Mathematical Problems in Engineering >Analysis of Single Channel Blind Source Separation Algorithm for Chaotic Signals
【24h】

Analysis of Single Channel Blind Source Separation Algorithm for Chaotic Signals

机译:混沌信号的单通道盲源分离算法分析

获取原文
获取原文并翻译 | 示例

摘要

In a wireless sensor network, the signal received by the terminal processor is usually a complex single channel hybrid chaotic signal. The engineering needs to separate the useful signal from the mixed signal to perform the next transmission analysis. Since chaotic signals are nonlinear and unpredictable, traditional blind separation algorithms cannot effectively separate chaotic signals. Aiming to correct these problems-based on the particle filter estimation algorithm-an extended Kalman particle filter algorithm (EPF) and an unscented Kalman particle filter algorithm (UPF) are proposed to solve the single channel blind separation problem of chaotic signals. Mixing chaotic signals of different intensities performs blind source separation. Using different evaluation indexes carries out the experiment and performance can be analyzed. The results show that the proposed algorithm effectively separates the mixed chaotic signals.
机译:在无线传感器网络中,终端处理器接收的信号通常是复杂的单通道混合混沌信号。工程技术需要从混合信号中分离出有用信号,以执行下一个传输分析。由于混沌信号是非线性且不可预测的,因此传统的盲分离算法无法有效地分离混沌信号。为了解决这些问题,基于粒子滤波估计算法,提出了扩展卡尔曼粒子滤波算法(EPF)和无味卡尔曼粒子滤波算法(UPF)来解决混沌信号的单通道盲分离问题。混合不同强度的混沌信号执行盲源分离。使用不同的评估指标进行实验并可以分析性能。结果表明,该算法有效地分离了混合混沌信号。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号