首页> 外文期刊>Mathematical Problems in Engineering >Multi-Swarm Multi-Objective Optimizer Based on p-Optimality Criteria for Multi-Objective Portfolio Management
【24h】

Multi-Swarm Multi-Objective Optimizer Based on p-Optimality Criteria for Multi-Objective Portfolio Management

机译:基于p-最优性准则的多群多目标投资组合管理

获取原文
获取原文并翻译 | 示例

摘要

Portfolio management is an important technology for reasonable investment, fund management, optimal asset allocation, and effective investment. Portfolio optimization problem (POP) has been recognized as an NP-hard problem involving numerous objectives as well as constraints. Applications of evolutionary algorithms and swarm intelligence optimizers for resolving multi-objective POP (MOPOP) have attracted considerable attention of researchers, yet their solutions usually convert MOPOP to POP by means of weighted coefficient method. In this paper, a multi-swarm multi-objective optimizer based on p-optimality criteria called p-MSMOEAs is proposed that tries to find all the Pareto optimal solutions by optimizing all objectives at the same time, rather than through the above transforming method. The proposed p-MSMOEAs extended original multiple objective evolutionary algorithms (MOEAs) to cooperative mode through combining p-optimality criteria and multi-swarm strategy. Comparative experiments of p-MSMOEAs and several MOEAs have been performed on six mathematical benchmark functions and two portfolio instances. Simulation results indicate that p-MSMOEAs are superior for portfolio optimization problem to MOEAs when it comes to optimization accuracy as well as computation robustness.
机译:投资组合管理是进行合理投资,基金管理,优化资产分配和有效投资的重要技术。投资组合优化问题(POP)被认为是一个涉及许多目标和约束的NP难题。进化算法和群体智能优化器在解决多目标POP(MOPOP)方面的应用引起了研究人员的极大关注,但是他们的解决方案通常通过加权系数法将MOPOP转换为POP。本文提出了一种基于p最优性准则的多群多目标优化器,称为p-MSMOEAs,它试图通过同时优化所有目标而不是通过上述变换方法来找到所有Pareto最优解。拟议的p-MSMOEA通过将p-最优准则和多群策略相结合,将原始的多目标进化算法(MOEA)扩展为协作模式。对p-MSMOEA和几种MOEA的比较实验已在六个数学基准函数和两个投资组合实例上进行。仿真结果表明,就优化精度和计算稳健性而言,p-MSMOEA在投资组合优化问题上优于MOEA。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2019年第2期|8418369.1-8418369.22|共22页
  • 作者单位

    Tianjin Polytech Univ Sch Mech Engn Tianjin 300387 Peoples R China|Tianjin Polytech Univ Sch Comp Sci & Software Tianjin 300387 Peoples R China;

    Tianjin Polytech Univ Sch Comp Sci & Software Tianjin 300387 Peoples R China;

    Jilin Univ Sch Math Jilin 130012 Jilin Peoples R China|Jilin Normal Univ Sch Math Jilin 136000 Jilin Peoples R China;

    Shenyang Normal Univ Coll Phys Sci & Technol Shenyang 110034 Liaoning Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号