首页> 外文期刊>Mathematical Problems in Engineering >A New Approach to Derive Priority Weights from Additive Interval Fuzzy Preference Relations Based on Logarithms
【24h】

A New Approach to Derive Priority Weights from Additive Interval Fuzzy Preference Relations Based on Logarithms

机译:基于对数的加性区间模糊偏好关系推导优先权重的新方法

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates the consistency definition and the weight-deriving method for additive interval fuzzy preference relations (IFPRs) using a particular characterization based on logarithms. In a recently published paper, a new approach with a parameter is developed to obtain priority weights from fuzzy preference relations (FPRs), then a new consistency definition for the additive IFPRs is defined, and finally linear programming models for deriving interval weights from consistent and inconsistent IFPRs are proposed. However, the discussion of the parameter value is not adequate and the weights obtained by the linear models for inconsistent IFPRs are dependent on alternative labels and not robust to permutations of the decision makers' judgments. In this paper, we first investigate the value of the parameter more thoroughly and give the closed form solution for the parameter. Then, we design a numerical example to illustrate the drawback of the linear models. Finally, we construct a linear model to derive interval weights from IFPRs based on the additive transitivity based consistency definition. To demonstrate the effectiveness of our proposed method, we compare our method to the existing method on three numerical examples. The results show that our method performs better on both consistent and inconsistent IFPRs.
机译:本文研究了基于对数的特殊刻画的加性区间模糊偏好关系(IFPR)的一致性定义和权重推导方法。在最近发表的论文中,开发了一种带有参数的新方法,可以从模糊偏好关系(FPR)中获得优先权重,然后为累加IFPR定义新的一致性定义,最后通过线性规划模型从一致性和建议使用不一致的IFPR。但是,对参数值的讨论是不够的,并且对于不一致的IFPR,线性模型所获得的权重取决于替代标签,并且对决策者的判断排列不可靠。在本文中,我们首先更彻底地研究参数的值,并给出参数的闭式解。然后,我们设计一个数值示例来说明线性模型的缺点。最后,我们建立了一个线性模型,基于基于加和传递性的一致性定义,从IFPR导出区间权重。为了证明我们提出的方法的有效性,我们在三个数值示例上将我们的方法与现有方法进行了比较。结果表明,我们的方法在一致和不一致的IFPR上都表现更好。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2018年第14期|3729741.1-3729741.11|共11页
  • 作者单位

    Army Engn Univ PLA, Nanjing, Jiangsu, Peoples R China;

    Army Engn Univ PLA, Nanjing, Jiangsu, Peoples R China;

    Army Engn Univ PLA, Nanjing, Jiangsu, Peoples R China;

    Army Engn Univ PLA, Nanjing, Jiangsu, Peoples R China;

    Force 31432 PLA, Shenyang, Liaoning, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号