首页> 外文期刊>Mathematical Problems in Engineering >Cross-Trained Worker Assignment Problem in Cellular Manufacturing System Using Swarm Intelligence Metaheuristics
【24h】

Cross-Trained Worker Assignment Problem in Cellular Manufacturing System Using Swarm Intelligence Metaheuristics

机译:基于群体智能元启发式方法的蜂窝制造系统交叉训练工人分配问题

获取原文
获取原文并翻译 | 示例

摘要

Cross-trained worker assignment has become increasingly important for manufacturing efficiency and flexibility in cellular manufacturing system because of the recent increase in labor cost. Researchers mainly focused on assigning skilled workers to tasks for favorable capacity or cost. However, few of them have recognized the need for skill level enhancement through cross-training to avoid excessive training, especially for workload balance across multiple cells. This study presents a new mathematical programming model aimed at minimum training and maximum workload balance with economical labor utilization, to address the worker assignment problem with a cross-training plan spanning multiple cells. The model considers the trade-off between training expenditure and workload balance to achieve a more flexible solution based on decision-maker's preference. Considering the computational complexity of the problem, the classical swarm intelligence optimizers, i.e., particle swarm optimization (PSO) and artificial bee colony (ABC), are implemented to search the problem landscape. To improve the optimization performance, a superior tracking ABC with an augmented information sharing strategy is designed to address the problem. Ten benchmark problems are employed for numerical experiments. The results indicate the efficiency and effectiveness of the proposed models as well as the developed algorithms.
机译:由于最近人工成本的增加,交叉培训的工人分配对于蜂窝式制造系统的制造效率和灵活性变得越来越重要。研究人员主要集中于分配技能工人以有利的能力或成本进行任务。但是,他们中很少有人意识到需要通过交叉训练来提高技能水平,以避免过多的训练,尤其是跨多个单元的工作量平衡时。这项研究提出了一种新的数学编程模型,旨在以经济的劳动力利用来实现最少的培训和最大的工作量平衡,以跨多个单元的交叉培训计划解决工人分配问题。该模型考虑了培训支出和工作量平衡之间的权衡,以根据决策者的偏好获得更灵活的解决方案。考虑到问题的计算复杂性,实现了经典的群体智能优化器,即粒子群优化(PSO)和人工蜂群(ABC),以搜索问题态势。为了提高优化性能,设计了具有增强信息共享策略的高级跟踪ABC来解决该问题。数值实验采用了十个基准问题。结果表明了所提出的模型以及所开发算法的效率和有效性。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2018年第14期|4302062.1-4302062.15|共15页
  • 作者单位

    Shenzhen Univ, Coll Management, Shenzhen, Peoples R China;

    Shenzhen Univ, Coll Management, Shenzhen, Peoples R China;

    Shenzhen Univ, Coll Management, Shenzhen, Peoples R China;

    Shenzhen Univ, Coll Management, Shenzhen, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号