首页> 外文期刊>Mathematical Problems in Engineering >Thermal Errors Classification Compensation without Sensor for CNC Machine Tools
【24h】

Thermal Errors Classification Compensation without Sensor for CNC Machine Tools

机译:不带传感器的数控机床热误差分类补偿

获取原文
获取原文并翻译 | 示例

摘要

Both multicollinearity and utilization deficiency of temperature sensors affect the robustness and the prediction precision of traditional thermal error prediction models. lb address the problem, a thermal error prediction model without temperature sensors is proposed. Firstly, the paper analyzes the temperature field and thermal deformation mechanisms of the spindle of a CNC gear grinding machine in accordance with the parameters, efficiencies, and structures of the machine spindle and bearing. A preliminary theoretical model is established on the basis of the mechanism analysis. Secondly, the theoretical model is corrected according to the actual operation parameters of the machine. Thirdly, verification experiments are carried out on machine tools of the same type. It is found that the corrected model has higher precision in predicting thermal errors at the same rotational velocity. The standard deviation and the maximum residual error are reduced by at least 39% and 48% separately. The prediction precision decreases with the increase in prediction range when predicting thermal errors at different rotational velocities. The model has high prediction precision and strong robustness in the case of reasonable prediction range and classified prediction. In a word, prediction precision and robustness of the model without temperature sensors can be effectively ensured by reasonably determining the prediction range and practicing classified prediction and compensation for thermal errors at different rotational velocities. The model established can be applied to machine tools that have difficulties in arranging sensors or those whose sensors are significantly disturbed.
机译:温度传感器的多重共线性和利用率不足都会影响传统热误差预测模型的鲁棒性和预测精度。为了解决该问题,提出了不具有温度传感器的热误差预测模型。首先,根据机床主轴和轴承的参数,效率和结构,分析了数控齿轮磨床主轴的温度场和热变形机理。在机理分析的基础上建立了初步的理论模型。其次,根据机床的实际运行参数对理论模型进行修正。第三,在相同类型的机床上进行验证实验。发现校正后的模型在预测相同转速下的热误差方面具有更高的精度。标准偏差和最大残留误差分别减少了至少39%和48%。当预测不同转速下的热误差时,预测精度随着预测范围的增加而降低。在合理的预测范围和分类预测的情况下,该模型具有较高的预测精度和较强的鲁棒性。总之,通过合理确定预测范围,对不同转速下的热误差进行分类预测和补偿,可以有效地保证无温度传感器的模型的预测精度和鲁棒性。建立的模型可以应用于在布置传感器时有困难的传感器或传感器受到严重干扰的机床。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2018年第10期|5752932.1-5752932.11|共11页
  • 作者单位

    Xian Univ Technol, Key Lab Mfg Equipment Shaanxi Prov, 5 Jinhua South Rd, Xian 710048, Shaanxi, Peoples R China;

    Xian Univ Technol, Key Lab NC Machine Tools & Integrated Mfg Equipme, Educ Minist, 5 Jinhua South Rd, Xian 710048, Shaanxi, Peoples R China;

    Panzhihua Univ, Sch Transportat & Automot Engn, 5 Airport Rd, Panzhihua 617000, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号