首页> 外文期刊>Mathematical Problems in Engineering >An Improved 3D Shape Recognition Method Based on Panoramic View
【24h】

An Improved 3D Shape Recognition Method Based on Panoramic View

机译:一种基于全景的改进的3D形状识别方法

获取原文
获取原文并翻译 | 示例

摘要

Recognition of three-dimensional (3D) shape is a remarkable subject in computer vision systems, because of the lack of excellent shape representations. With the development of 2.5D depth sensors, shape recognition is becoming more important in practical applications. Many methods have been proposed to preprocess 3D shapes, in order to get available input data. A common approach employs convolutional neural networks (CNNs), which have become a powerful tool to solve many problems in the field of computer vision. DeepPano, a variant of CNN, converts each 3D shape into a panoramic view and shows excellent performance. It is worth paying attention to the fact that both serious information loss and redundancy exist in the processing of DeepPano, which limits further improvement of its performance. In this work, we propose a more effective method to preprocess 3D shapes also based on a panoramic view, similar to DeepPano. We introduce a novel method to expand the training set and optimize the architecture of the network. The experimental results show that our approach outperforms DeepPano and can deal with more complex 3D shape recognition problems with a higher diversity of target orientation.
机译:由于缺乏出色的形状表示,在计算机视觉系统中识别三维(3D)形状是一个显着的课题。随着2.5D深度传感器的发展,形状识别在实际应用中变得越来越重要。为了获得可用的输入数据,已提出了许多方法来预处理3D形状。卷积神经网络(CNN)是一种常见的方法,它已成为解决计算机视觉领域中许多问题的强大工具。 DeepPano是CNN的变体,可将每个3D形状转换为全景视图并显示出出色的性能。值得注意的是,DeepPano的处理过程中同时存在严重的信息丢失和冗余,这限制了其性能的进一步提高。在这项工作中,我们提出了一种更有效的方法,也可以基于全景图对3D形状进行预处理,类似于DeepPano。我们引入一种新颖的方法来扩展训练集并优化网络的体系结构。实验结果表明,我们的方法优于DeepPano,并且可以处理目标定向多样性更高的更复杂的3D形状识别问题。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2018年第10期|6467957.1-6467957.11|共11页
  • 作者单位

    Xi An Jiao Tong Univ, Shaanxi Engn Lab Vibrat Control Aerosp Struct, Xian 710049, Shaanxi, Peoples R China;

    Xi An Jiao Tong Univ, Sch Aerosp, State Key Lab Strength & Vibrat, Xian 710049, Shaanxi, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号