首页> 外文期刊>Mathematical Problems in Engineering >Safety Monitoring Model of a Super-High Concrete Dam by Using RBF Neural Network Coupled with Kernel Principal Component Analysis
【24h】

Safety Monitoring Model of a Super-High Concrete Dam by Using RBF Neural Network Coupled with Kernel Principal Component Analysis

机译:基于RBF神经网络和核主成分分析的超高混凝土大坝安全监测模型

获取原文
获取原文并翻译 | 示例

摘要

Effective deformation monitoring is vital for the structural safety of super-high concrete dams. The radial displacement of the dam body is an important index of dam deformation, which is mainly influenced by reservoir water level, temperature effect, and time effect. In general, the safety monitoring models of dams are built on the basis of statistical models. The temperature effect of dam safety monitoring models is interpreted using approximate functions or the temperature values of a few points of measurement. However, this technique confers difficulty in representing the nonlinear features of the temperature effect on super-high concrete dams. In this study, a safety monitoring model of super-high concrete dams is established through the radial basis neural network (RBF-NN) and kernel principal component analysis (KPCA). The RBF-NN with strong nonlinear fitting capacity is utilized as the framework of the model, and KPCA with different kernels is adopted to extract the temperature variables of the dam temperature dataset. The model is applied to a super-high arch dam in China, and results show that the Hybrid-KPCA -RBF-NN model has high fitting and prediction precision and thus has practical application value.
机译:有效的变形监测对于超高混凝土大坝的结构安全至关重要。坝体的径向位移是坝体变形的重要指标,它主要受水库水位,温度效应和时间效应的影响。通常,大坝的安全监测模型是建立在统计模型的基础上的。使用近似函数或几个测量点的温度值来解释大坝安全监控模型的温度效应。但是,这种技术难以表示超高混凝土大坝温度效应的非线性特征。本研究通过径向基神经网络(RBF-NN)和核主成分分析法(KPCA)建立了超高混凝土大坝的安全监测模型。以非线性拟合能力强的RBF-NN作为模型的框架,采用具有不同核的KPCA提取大坝温度数据集的温度变量。该模型在我国某超高拱坝上的应用表明,Hybrid-KPCA -RBF-NN模型具有较高的拟合和预测精度,具有实际的应用价值。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2018年第11期|1712653.1-1712653.13|共13页
  • 作者单位

    Hohai Univ, State Key Lab Hydrol Water Resources & Hydraul En, Nanjing 210098, Jiangsu, Peoples R China;

    Hohai Univ, Coll Water Conservancy & Hydropower Engn, Nanjing 210098, Jiangsu, Peoples R China;

    Hohai Univ, Nat Engn Res Ctr Water Resources Efficient Utiili, Nanjing 210098, Jiangsu, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号