首页> 外文期刊>Mathematical Problems in Engineering >Prediction of Peak Velocity of Blasting Vibration Based on Artificial Neural Network Optimized by Dimensionality Reduction of FA-MIV
【24h】

Prediction of Peak Velocity of Blasting Vibration Based on Artificial Neural Network Optimized by Dimensionality Reduction of FA-MIV

机译:基于FA-MIV降维优化的人工神经网络的爆破峰速度预测

获取原文
获取原文并翻译 | 示例

摘要

Blasting vibration is harmful to the nearby habitants and dwellings in diverse geotechnical engineering. In this paper, a novel scheme based on Artificial Neural Network (ANN) method optimized by dimensionality reduction of Factor Analysis and Mean Impact Value (FA-MIV) is proposed to predict peak particle velocity (PPV) of blasting vibration. To construct the model, nine parameters of field measurement are taken as undetermined input parameters for research, while peak particle velocity (PPV) is considered as output parameter. With the application of FA, common factors are extracted from undetermined input parameters. Then, principal components are defined as a linear combination of common factors. The weight of each principal components effected on output parameter is ranked according to the calculation of MIV, and two principal components with minimum weight are eliminated. Ultimately, output parameter (PPV) is explained in a low-dimensional space with four input characteristic parameters. In the prepared database consisting of 108 datasets, 98 datasets are used for the training of the model, while the rest are used for testing performance. The performances of the ANN models are compared with regression analysis, in terms of coefficient of determination (R-2) and mean absolute error (MAE). It is found that the performances of ANN models with using FA-MIV are superior to those of models without using FA-MIV in the prediction of PPV. In addition, the abilities of ANN models are all superior to regression analysis in the prediction of PPV. The result obtained from ELM is more accurate than BPNN and MVRA models.
机译:在各种岩土工程中,爆破振动对附近的居民和住宅有害。本文提出了一种基于人工神经网络(ANN)方法的新方案,该方法通过对因子分析和平均冲击值(FA-MIV)进行降维优化,以预测爆破振动的峰值速度(PPV)。为了构建模型,将9个现场测量参数作为未确定的输入参数进行研究,而将峰值粒子速度(PPV)作为输出参数。借助FA的应用,可从不确定的输入参数中提取公因子。然后,将主成分定义为公因子的线性组合。根据MIV的计算,对影响输出参数的每个主成分的权重进行排序,并消除两个权重最小的主成分。最终,在具有四个输入特征参数的低维空间中解释了输出参数(PPV)。在准备好的由108个数据集组成的数据库中,有98个数据集用于模型训练,其余的则用于测试性能。在确定系数(R-2)和平均绝对误差(MAE)方面,将ANN模型的性能与回归分析进行了比较。结果发现,在预测PPV时,使用FA-MIV的ANN模型的性能优于未使用FA-MIV的模型。此外,在预测PPV方面,ANN模型的能力都优于回归分析。从ELM获得的结果比BPNN和MVRA模型更准确。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2018年第6期|8473547.1-8473547.12|共12页
  • 作者

    Zhang Zhongya; Jin Xiaoguang;

  • 作者单位

    Natl Local Joint Engn Res Ctr Chongqing, Reservoir Area Environm Geol Hazard Prevent & Con, Chongqing 400030, Peoples R China;

    Natl Local Joint Engn Res Ctr Chongqing, Reservoir Area Environm Geol Hazard Prevent & Con, Chongqing 400030, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号