首页> 外文期刊>Mathematical Problems in Engineering >A Novel Bayesian Method for Calculating Circular Error Probability with Systematic-Biased Prior Information
【24h】

A Novel Bayesian Method for Calculating Circular Error Probability with Systematic-Biased Prior Information

机译:一种基于系统有先验信息的圆形错误概率计算的贝叶斯新方法

获取原文
获取原文并翻译 | 示例

摘要

Circular Error Probability (CEP) is defined as the radius of a circle where the probability of an impact point being inside is 50%, which is also widely used as a measure of the guidance weapon systems' precision. In order to achieve a fusion of various test information, Bayesian methods and improved Bayesian methods have been extensively studied in calculating the CEP. Nevertheless, these methods could fail when there exists unknown systematic bias in the prior information. Therefore, a novel method called Bayesian estimation based on representative points (BERP) with an optimization procedure for determining the optimal number of representative points is proposed in this paper. Explicit theoretical analyses demonstrate that the BERP outperforms the classical Bayesian methods when fusing the slightly biased prior information and also give the bound of the systematic bias for stopping using the heavily biased prior information. Moreover, when the systematic bias is within the bound, simulation results indicate that our method is credible and outperforms the classical Bayesian method in calculating the CEP of guidance weapon systems.
机译:圆形错误概率(CEP)定义为一个圆的半径,其中撞击点位于内部的概率为50%,也广泛用作衡量制导武器系统精度的量度。为了实现各种测试信息的融合,在计算CEP时已广泛研究了贝叶斯方法和改进的贝叶斯方法。但是,如果先验信息中存在未知的系统偏差,这些方法可能会失败。因此,本文提出了一种基于代表点贝叶斯估计的新方法,该方法具有确定代表点最佳数量的优化程序。明确的理论分析表明,当融合略有偏差的先验信息时,BERP优于传统的贝叶斯方法,并且为停止使用严重偏差的先验信息提供了系统性偏差的界限。此外,当系统偏差在一定范围内时,仿真结果表明我们的方法在制导武器系统的CEP方面是可靠的,并且优于经典的贝叶斯方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号