首页> 外文期刊>Mathematical notes >On the number of noncritical vertices in strongly connected digraphs
【24h】

On the number of noncritical vertices in strongly connected digraphs

机译:关于强连通的有向图的非关键顶点的数量

获取原文
获取原文并翻译 | 示例

摘要

By definition, a vertex w of a strongly connected (or, simply, strong) digraph D is noncritical if the subgraph D — w is also strongly connected. We prove that if the minimal out (or in) degree k of D is at least 2, then there are at least k noncritical vertices in D. In contrast to the case of undirected graphs, this bound cannot be sharpened, for a given k, even for digraphs of large order. Moreover, we show that if the valency of any vertex of a strong digraph of order n is at least 3/4n, then it contains at least two noncritical vertices. The proof makes use of the results of the theory of maximal proper strong subgraphs established by Mader and developed by the present author. We also construct a counterpart of this theory for biconnected (undirected) graphs.
机译:根据定义,如果子图D_w也被牢固连接,则强连接(或简单地说,强)图D的顶点w是非关键的。我们证明,如果D的最小向外(或向内)度k至少为2,则D中至少存在k个非关键顶点。与无向图的情况相反,对于给定的k,此边界不能被锐化,即使对于有序的有向图也是如此。此外,我们表明,如果阶为n的强有向图的任何顶点的化合价至少为3 / 4n,则它包含至少两个非关键顶点。该证明利用了由Mader建立并由本作者开发的最大适当强子图理论的结果。我们还为双连通(无向)图构造了该理论的对应物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号