首页> 外文期刊>Mathematical and Computer Modelling of Dynamical Systems >Modelling the clogging of gas turbine filter houses in heavy- duty power generation systems
【24h】

Modelling the clogging of gas turbine filter houses in heavy- duty power generation systems

机译:重型发电系统中燃气轮机滤波器堵塞堵塞

获取原文
获取原文并翻译 | 示例

摘要

A prognostic approach based on a MISO (multiple inputs and single output) fuzzy logic model was introduced to estimate the pressure difference across a gas turbine (GT) filter house in a heavy-duty power generation system. For modelling and simulation of clogging of the GT filter house, nine real-time process variables (ambient temperature, humidity, ambient pressure, GT produced load, inlet guide vane position, airflow rate, wind speed, wind direction and PM10 dust concentration) were fuzzified using a graphical user interface within the framework of an artificial intelligence-based methodology. The results revealed that the proposed fuzzy logic model produced very small deviations and showed a superior predictive performance than the conventional multiple regression methodology, with a very high determination coefficient of 0.974. A complicated dynamic process, such as clogging phenomenonin heavy-duty GT system, was successfully modelled due to high capability of the fuzzy logic-based prognostic approach in capturing the nonlinear interactions.
机译:引入了一种基于MISO(多输入和单输出)模糊逻辑模型的预后方法来估计重型发电系统中燃气轮机(GT)过滤器房中的压力差。对于GT过滤器房屋堵塞的建模和仿真,九个实时过程变量(环境温度,湿度,环境压力,GT产生的负载,入口导向叶片位置,气流率,风速,风向和PM10灰尘浓度)是使用基于人工智能的方法的框架内使用图形用户界面进行模糊。结果表明,所提出的模糊逻辑模型产生了非常小的偏差,并且显示出比传统的多元回归方法的更高的预测性能,具有0.974的非常高的确定系数。一种复杂的动态过程,例如堵塞现象重度GT系统,由于捕获非线性相互作用的模糊逻辑的预后方法的高能力而成功地建模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号