首页> 外文期刊>Mathematical and Computer Modelling of Dynamical Systems >Neural net versus classical models for the detection and localization of leaks in pipelines
【24h】

Neural net versus classical models for the detection and localization of leaks in pipelines

机译:神经网络与经典模型用于管道泄漏的检测和定位

获取原文
获取原文并翻译 | 示例

摘要

Four models of a pipeline are compared in the paper: a nonlinear distributed-parameter model, a linear distributed-parameter model, a simplified lumped-parameter model and an extended neural-net-based model. The transcendental transfer function of the linearized model is obtained by a Laplace transformation and corresponding initial and boundary conditions. The lumped-parameter model is obtained by a Taylor series extension of the transencdental transfer function. Based on the experience of linear models the structure of the neural net model, as an addendum to the nonlinear distributed-parameter model, is obtained. All four models are tested on a real pipeline data with an artificially generated leak.
机译:本文比较了管道的四个模型:非线性分布参数模型,线性分布参数模型,简化的集总参数模型和基于扩展神经网络的模型。线性化模型的先验传递函数是通过拉普拉斯变换以及相应的初始条件和边界条件获得的。集总参数模型是通过超越经验传递函数的泰勒级数展开获得的。根据线性模型的经验,获得了神经网络模型的结构,作为非线性分布参数模型的补充。所有四个模型都在真实的管道数据上进行了测试,并人工产生了泄漏。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号