...
首页> 外文期刊>Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing >Effect of thermal fatigue on mechanical characteristics and contact damage of zirconia-based thermal barrier coatings with HVOF-sprayed bond coat
【24h】

Effect of thermal fatigue on mechanical characteristics and contact damage of zirconia-based thermal barrier coatings with HVOF-sprayed bond coat

机译:热疲劳对喷涂HVOF的氧化锆基热障涂层力学性能和接触损伤的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Mechanical characteristics, such as hardness, elastic modulus and indentation stress-strain curves, and contact damage of a thermal barrier coating (TBC) system with a top coat prepared using an air-plasma spraying (APS) process and a bond coat using a high-velocity oxygen flow (HVOF) process have been investigated using the nanoindentation and Hertzian indentation tests, as a function of the thermal fatigue condition. The bond coat and the top coat deposited on the substrate make the TBC system soft, showing lower stress-strain curves than that of the substrate. Thermal fatigue does not affect the stress-strain curves, except for thermal fatigue for 500 h. However, the thermally grown oxide (TGO) layer thickness is dependent on the exposure time under thermal fatigue, showing a nominal thickness of approximately 4 μm after thermal fatigue for 500 h, independent of the number of thermal fatigue cycles. The values of hardness, H, in each component are not greatly affected by thermal fatigue, except for thermal fatigue for 500 h, whereas the value of elastic modulus, E, in the bond coat is dominantly affected by thermal fatigue with a smaller increase for the other components—top coat and substrate. The H/E ratio for the top coat is higher than those for the bond coat and the substrate, indicating that resintering of the top coat occurs during thermal fatigue. The top coat acts as a protection layer for contacts, resulting in reduced damage to the substrate. As the exposure time is increased in the thermal fatigue experiments, the damage to the top coat is inhibited with less crack coalescence. The higher stiffness in the bond coat induces a cracking or delamination at the interface between the bond coat and the substrate, whereas thermal fatigue increases the mechanical properties, especially E, of the bond coat and enhances the damage tolerance of the TBC system.
机译:机械特性,例如硬度,弹性模量和压痕应力-应变曲线,以及热障涂层(TBC)系统与采用空气等离子喷涂(APS)工艺制备的面漆和采用高温喷涂的粘结层的接触损伤已经使用纳米压痕和赫兹压痕测试研究了高速氧气流量(HVOF)过程,该过程是热疲劳条件的函数。沉积在基材上的粘结层和面漆使TBC系统变软,显示出比基材更低的应力-应变曲线。除了500小时的热疲劳外,热疲劳不影响应力-应变曲线。但是,热生长氧化物(TGO)层的厚度取决于热疲劳下的暴露时间,在500 h的热疲劳后,其名义厚度约为4μm,与热疲劳循环的次数无关。除500小时的热疲劳外,各组分的硬度H值均不受热疲劳的影响很大,而粘结层中的弹性模量E的值主要受热疲劳的影响,随温度的增加较小。其他成分-面漆和底材。面漆的H / E比高于粘结层和基材的H / E,表明在热疲劳过程中会发生面漆的树脂化。面漆充当接触的保护层,从而减少了对基材的损坏。在热疲劳实验中,随着暴露时间的增加,对面涂层的破坏被抑制,裂纹的聚结较少。粘合涂层中较高的刚度在粘合涂层和基材之间的界面处引起裂纹或分层,而热疲劳增加了粘合涂层的机械性能,尤其是E,并增强了TBC系统的损伤耐受性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号