首页> 外文学位 >Mechanical properties of diffusion aluminide bond coats for thermal barrier coatings.
【24h】

Mechanical properties of diffusion aluminide bond coats for thermal barrier coatings.

机译:用于热障涂层的扩散铝化物粘结涂层的机械性能。

获取原文
获取原文并翻译 | 示例

摘要

Thermal barrier coatings (TBCs) are commonly used in commercial gas turbine engines where the technological benefit of a TBC is derived from its ability to sustain high thermal gradients while maintaining structural integrity in an extremely hostile environment. One of the key components in a thermal barrier coating system is the intermetallic bond coat. There are two major types of commercial bond coats: diffusion aluminide (Ni,Pt)Al bond coats and plasma sprayed MCrAlY overlay bond coats. The thermal cyclic durability of a TBC relies strongly on the physical and mechanical properties of the bond coat layer, but the mechanical properties of diffusion bond coats have not been previously measured because of limitations related to bond coat geometry.; In this thesis, high temperature microsample tensile testing has been employed to characterize the mechanical properties (coefficient of thermal expansion (CTE), Young's modulus (E), yield strength (σy) and stress relaxation) of three platinum modified nickel aluminide bond coats at different stages of their cyclic lives in the temperature range of 25 to 1150°C. The mechanical properties of (Ni, Pt)Al bond coats are found to be temperature-dependent and to alter dynamically in accordance with the microstructural evolution and chemistry changes that occur with thermal cycling.; The Young's modulus of (Ni, Pt)Al bond coats is found to be in the range of 120-200GPa at room temperature, which is in good agreement with the NiAl results. The elastic modulus of (Ni, Pt)Al decreases slightly with temperature in a nearly linear manner and may change as a result of thermal cycling. The CTE of (Ni, Pt)Al bond coats has been measured to increase slightly from 15 to 17 ppm °C−1 in the temperature range of 400 to 850°C.; Above 600°C, the elevated temperature strength is found to decrease rapidly with increasing temperature, reaching values of 10∼25 MPa at 1150°C. Thermal cycling has a profound effect on the strength of the platinum aluminide bond coats. The intermediate temperature yield strength is found to increase dramatically as a result of thermal cycling, which is related to a martensitic transformation and the formation of gamma-prime. By contrast, the high temperature strength is found to remain approximately the same, resulting from the restoration of the B2 parent phase at high temperatures. Differences in the mechanical behavior of nominally identical (Ni, Pt)Al bond coats have been attributed to differences in stoichiometry, Pt content and run-to-run variation in the fabrication processes. The addition of Pt and the formation of γ also appear to strengthen the bond coat. Attempts to strengthen the bond coat through the introduction of Hf by the use of Hf-rich substrates were undermined by the fact that the Hf was not incorporated into the β-phase of the bond coats.; Power-law creep was found to govern the elevated temperature stress relaxation behavior of diffusion aluminide (Ni, Pt)Al bond coats, and empirical equations for as-fabricated and thermally cycled (Ni, Pt)Al bond coats have been derived. Variations in the activation energy for creep and the creep resistance point to changes in the creep mechanism, which may be related to the emergence of martensite phase, the formation of γ during thermal cycling, stoichiometry and Pt content. Comparison with creep strengths of two MCrAlY bond coats suggest that the (Ni,Pt)Al bond coats generally possess a higher creep strength than MCrAlY bond coats.
机译:热障涂层(TBC)通常用于商用燃气涡轮发动机,其中TBC的技术优势源于其在极端恶劣环境中维持高热梯度同时保持结构完整性的能力。隔热涂层系统的关键组件之一是金属间粘合涂层。商业粘合涂层主要有两种类型:扩散铝化物(Ni,Pt)Al粘合涂层和等离子喷涂MCrAlY覆盖粘合涂层。 TBC的热循环耐久性强烈依赖于粘合涂层的物理和机械性能,但是由于与粘合涂层的几何形状有关的限制,扩散粘合涂层的机械性能以前没有被测量过。本文通过高温显微样品拉伸试验来表征其力学性能(热膨胀系数(CTE),杨氏模量(E),屈服强度(σ y )和应力松弛)。在25至1150°C的温度范围内,在其循环寿命的不同阶段使用了三枚铂改性的铝化镍铝结合剂涂层。 (Ni,Pt)Al粘结层的机械性能是随温度变化的,并且随着热循环发生的微观结构演变和化学变化而动态变化。发现在室温下,(Ni,Pt)Al粘结层的杨氏模量在120-200GPa的范围内,这与NiAl的结果非常吻合。 (Ni,Pt)Al的弹性模量随温度以几乎线性的方式稍微降低,并且可能由于热循环而改变。 (Ni,Pt)Al粘结层的CTE经测量在400至850°C的温度范围内从15 ppm°C -1 略有增加。高于600℃时,发现高温强度随温度升高而迅速降低,在1150℃时达到10〜25 MPa。热循环对铝化铂粘结涂层的强度有深远的影响。由于热循环,发现中间温度屈服强度急剧增加,这与马氏体相变和γ素形成有关。相比之下,发现高温强度保持大致相同,这归因于高温下B2母相的恢复。名义上相同的(Ni,Pt)Al粘结涂层的机械性能差异已归因于制造过程中化学计量,Pt含量和运行间差异的差异。 Pt的添加和γ'的形成也似乎增强了键合涂层。由于没有将Hf掺入粘结层的β相中,破坏了通过使用富含Hf的底物引入Hf来增强粘结层的尝试。发现幂律蠕变可控制扩散铝化物(Ni,Pt)Al粘结涂层的高温应力松弛行为,并推导出了预制和热循环(Ni,Pt)Al粘结涂层的经验方程。蠕变激活能的变化和抗蠕变性表明蠕变机理发生变化,这可能与马氏体相的出现,热循环过程中γ'的形成,化学计量和Pt含量有关。与两种MCrAlY粘结层的蠕变强度比较表明,(Ni,Pt)Al粘结层通常具有比MCrAlY粘结层更高的蠕变强度。

著录项

  • 作者

    Pan, Deng.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 254 p.
  • 总页数 254
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号