首页> 外文期刊>Materials Science and Engineering >Microstructural modeling of transgranular and intergranular fracture in crystalline materials with coincident site lattice grain-boundaries: Σ3 and Σ17b bicrystals
【24h】

Microstructural modeling of transgranular and intergranular fracture in crystalline materials with coincident site lattice grain-boundaries: Σ3 and Σ17b bicrystals

机译:晶格晶界重合的晶体材料中晶界和晶间断裂的微观结构模型:Σ3和Σ17b双晶

获取原文
获取原文并翻译 | 示例

摘要

The competing microstructural failure mechanisms of transgranular (TG) and intergranular (IG) fracture, in martensitic steel bicrystals with coincident site lattice (CSL) boundaries of Σ3 and Σ17b, have been investigated, using a dislocation-density-based crystalline plasticity formulation and a recently developed overlapping fracture method. A dislocation-density grain boundary (GB) interaction scheme was coupled within a dislocation-density based crystal plasticity formulation to investigate how different types of CSL GBs affect dislocation-density evolution, plastic deformation, dislocation pile-up formation, TG and IG fracture, and fracture toughness. The computational predictions indicate that the bicrystal, with a Σ3 boundary, transitioned from IG to TG fracture, with large dislocation density generation and plastic deformation on the TG fracture planes. Bicrystals with the Σ17b boundary failed due to intergranular fracture and rupture, with much lower, in comparison with the Σ3 boundary case, dislocation density generation and plastic deformation. These predictions, which are consistent with experimental observations, indicate that Σ3 boundary is resistant to IG fracture with a higher fracture toughness than the Σ17b boundary case. More significantly, the computational framework can potentially be used as a guideline for GB engineering for failure-resistant materials.
机译:使用基于位错密度的晶体可塑性公式和a,研究了具有Σ3和Σ17b重合的点阵晶格(CSL)边界的马氏体钢双晶中的跨晶(TG)和晶间(IG)断裂的竞争性微观破坏机理。最近开发了重叠断裂法。在基于位错密度的晶体塑性公式中耦合了位错密度晶界(GB)相互作用方案,以研究不同类型的CSL GBs如何影响位错密度演变,塑性变形,位错堆积形成,TG和IG断裂,和断裂韧性。计算预测表明,具有Σ3边界的双晶从IG转变为TG断裂,在TG断裂面上产生大量的位错密度和塑性变形。具有Σ17b边界的双晶由于晶间断裂和破裂而失效,与Σ3边界情况相比,其位错密度的产生和塑性变形的发生率要低得多。这些与实验观察结果一致的预测表明,与Σ17b边界情况相比,Σ3边界具有更高的断裂韧性,可抵抗IG断裂。更重要的是,计算框架可以潜在地用作GB工程抗故障材料的指南。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号