首页> 外文期刊>Materials Science and Engineering >The effect of strain rate on mechanical properties and microstructure of a metastable FeMnCoCr high entropy alloy
【24h】

The effect of strain rate on mechanical properties and microstructure of a metastable FeMnCoCr high entropy alloy

机译:应变速率对亚稳FeMnCoCr高熵合金力学性能和组织的影响

获取原文
获取原文并翻译 | 示例

摘要

The relationship between mechanical properties and microstructures of a metastable dual-phase high entropy alloy Fe_(50)Mn_(30)Co_(10)Cr_(10) under uniaxial tensile testing at different strain rates (10~(-3) s~(-1)~10~3 s~(-1)) has been studied systematically. As the strain rate increases, yield strength, ultimate tensile strength and uniform elongation decrease first and then increase. Namely, when the strain rate is 10~(-3) s~(-1), yield strength and ultimate tensile strength are 280 MPa and 720 MPa, respectively, with the uniform elongation of 64.2%. When the strain rate is increased to 1 s~(-1), yield strength and ultimate tensile strength are 300 MPa and 672 MPa, respectively, and uniform elongation decreases to 49.2%. When the strain rate reaches 10~3 s~(-1) yield strength and ultimate tensile strength increase to 380 MPa and 810 MPa, respectively, while uniform elongation is elevated to 67%. As dynamic deformation is affected by the adiabatic heating, the stacking fault energy of the alloy is increased by —13 mJ m~(-2) at a strain rate of 10~3 s~(-1) compared with that in the quasi-static condition. Under quasi-static loading, martensitic transformation is the dominant deformation mechanism. Under dynamic loading, when the strain is low the deformation induced phase transformation dominates, whereas as the loading proceeds mechanical twinning becomes the dominant deformation mode. At the same time, the adiabatic temperature rise under dynamic tests also causes a reverse transformation from e-martensite to austenite. Accordingly, the release of internal stress and the formation of soft and ductile austenite jointly contribute to the elevated uniform elongation of the material. Both mechanical twinning and martensitic reverse transformation promote the micro-structure to be dynamically refined, so that the alloy shows the good plasticity while maintaining the high ultimate tensile strength at dynamic strain rates.
机译:亚稳态双相高熵合金Fe_(50)Mn_(30)Co_(10)Cr_(10)在不同应变率(10〜(-3)s〜()下的单轴拉伸试验中力学性能与显微组织的关系对-1)〜10〜3 s〜(-1))进行了系统的研究。随着应变率的增加,屈服强度,极限抗拉强度和均匀伸长率先降低,然后增加。即,当应变率为10〜(-3)s〜(-1)时,屈服强度和极限抗拉强度分别为280 MPa和720 MPa,均匀伸长率为64.2%。当应变率增加到1 s〜(-1)时,屈服强度和极限抗拉强度分别为300 MPa和672 MPa,均匀伸长率降低至49.2%。当应变率达到10〜3 s〜(-1)时,屈服强度和极限抗拉强度分别增加到380 MPa和810 MPa,而均匀伸长率提高到67%。由于绝热加热会影响动态变形,因此与准合金相比,合金的堆垛层错能以10〜3 s〜(-1)的应变速率增加了13 mJ m〜(-2)。静态条件。在准静态载荷下,马氏体相变是主要的变形机制。在动态载荷下,当应变较低时,变形引起的相变起主导作用,而随着载荷的进行,机械孪晶成为主要的变形模式。同时,在动态测试下绝热温度的升高也引起了从马氏体到奥氏体的反向转变。因此,内部应力的释放以及软奥氏体和韧性奥氏体的形成共同有助于提高材料的均匀伸长率。机械孪晶和马氏体逆相变都促进了微观结构的动态细化,因此合金在动态应变速率下显示出良好的可塑性,同时保持了很高的极限拉伸强度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号