...
首页> 外文期刊>Materials Science and Engineering >Effect of texture types on microstructure evolution and mechanical properties of AZ31 magnesium alloy undergoing uniaxial tension deformation at room temperature
【24h】

Effect of texture types on microstructure evolution and mechanical properties of AZ31 magnesium alloy undergoing uniaxial tension deformation at room temperature

机译:织构类型对AZ31镁合金室温单轴拉伸变形组织和力学性能的影响

获取原文
获取原文并翻译 | 示例

摘要

Influence of texture type on mechanical properties and the evolution of microstructure and texture is thoroughly investigated via uniaxial tension experiment along rolling direction (RD) at room temperature on two different AZ31 alloy sheets. Electron backscattered diffraction (EBSD) measurements on deformed samples confirm that dislocation slip is the main deformation mechanism in as-received sheet with a typical basal texture, while dislocation slip and extension twinning (ET) both contribute to sustaining plastic strain in the sheet with a rare RD-split bimodal texture, which is fabricated by equal channel angular rolling and continuous bending process with subsequent annealing (ECAR-CB-A). Therefore, these two sheets demonstrate obviously different texture evolution during plastic deformation. As-received sheet maintains basal texture and further experience the concentration of basal poles towards normal direction (ND). However, ECAR-CB-A sheet not only undergoes the gradual diffusion and rotation of tilted basal poles to ND but also the development of a new TD-component texture. The activation of ET variants in ECAR-CB-A sheet is confirmed to play an important role in texture evolution, and the number of activated ET variants is increasing with the increase of angle between ND and c-axis. In addition, acquired mechanics data demonstrate that ECAR-CB-A sheet possesses higher fracture elongation (24%) and lower yield stress (73 MPa) as compared to as-received sample. This issue can be ascribed to the participation of ET to coordinate plastic deformation along c-axis and the easier activation of basal slip in ECAR-CB-A sheet.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号