首页> 外文期刊>Materials & design >Effective in situ material properties of micron-sized SiO_2 particles in SiO_2 particulate polymer composites
【24h】

Effective in situ material properties of micron-sized SiO_2 particles in SiO_2 particulate polymer composites

机译:SiO_2颗粒状聚合物复合材料中微米级SiO_2颗粒的有效原位材料性能

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Several analytical models exist for determination of the Young's modulus and coefficient of thermal expansion (CTE) of particulate composites. However, it is necessary to provide accurate material properties of the particles as input data to such analytical models in order to precisely predict the composite's properties, particularly at high particle loading fractions. In fact, the constituent's size scale often presents a technical challenge to accurately measure the particles' properties such as Young's modulus or CTE. Moreover, the in situ material properties of particles may not be the same as the corresponding bulk properties when the particles are embedded in a polymer matrix. To have a better understanding of the material properties and provide useful insight and design guidelines for particulate composites, the concept of "effective in situ constituent properties" and an indirect method were employed in this study. This approach allows for the indirect determination of the particle's in situ material properties by combining the experimentally determined composite and matrix properties and finite element (FE) models for predicting the corresponding composite properties, then backing out the effective in situ particle properties. The proposed approach was demonstrated with micron-size SiO_2 particle reinforced epoxy composites over a range of particle loading fractions up to 35 vol.% by indirectly determining both the effective Young's modulus and the effective CTE of the particles. To the best of our knowledge, this study is the first published report on the indirect determination of both the Young's modulus and the CTE of micron size particles in particulate composites. Similar results on Young's modulus of micron-size SiO_2 particles measured from nano-indentation testing are encouraging.
机译:存在几种用于确定颗粒复合材料的杨氏模量和热膨胀系数(CTE)的分析模型。但是,有必要提供颗粒的精确材料特性作为此类分析模型的输入数据,以精确预测复合材料的特性,尤其是在高颗粒负载分数下。实际上,成分的尺寸标度通常对准确测量颗粒的性能(例如杨氏模量或CTE)提出了技术挑战。此外,当将颗粒嵌入聚合物基质中时,颗粒的原位材料性质可能与相应的本体性质不同。为了更好地了解材料特性并为颗粒复合材料提供有用的见识和设计指导,本研究采用了“有效的原位组成特性”的概念和间接方法。通过结合实验确定的复合材料和基体特性以及用于预测相应复合材料特性的有限元(FE)模型,然后回退有效的原位粒子特性,该方法可以间接确定粒子的原位材料特性。通过间接确定颗粒的有效杨氏模量和有效CTE,用微米级SiO_2颗粒增强的环氧复合材料在高达35 vol。%的颗粒负载分数范围内证明了所提出的方法。据我们所知,本研究是首次公开报告间接测定颗粒复合材料中微米尺寸颗粒的杨氏模量和CTE。通过纳米压痕测试测得的微米级SiO_2颗粒的杨氏模量的相似结果令人鼓舞。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号