首页> 外文期刊>Materials & design >An artificial neural network for predicting corrosion rate and hardness of magnesium alloys
【24h】

An artificial neural network for predicting corrosion rate and hardness of magnesium alloys

机译:预测镁合金腐蚀速率和硬度的人工神经网络

获取原文
获取原文并翻译 | 示例

摘要

There presently exists a demand for development of magnesium (Mg) alloys for wrought applications. In this study, alloying additions of Zn, Ca, Zr, Gd and Sr to Mg were made in binary, ternary and quaternary combinations up to a maximum total alloy loading -3 wt.%, and thus termed dilute. Such dilute alloys were studied for the purposes of potential sheet applications. The corrosion of a total of 53 custom alloys was studied in conjunction with microhardness. The results reveal that hardness increased with total alloy loading, whilst the corrosion rates did not show any clear relationship with alloy loading. Corrosion of the tested alloys was instead very sensitive to both the type and amount of the unique alloying addition. This indicates that the optimisation of properties requires a detailed knowledge of the electrochemical influence of unique alloying additions. The work contributes to an understanding of compositional effects on the corrosion of Mg, and can be exploited in prediction of corrosion resistance of existing and future Mg alloys.
机译:当前,存在对用于锻造应用的镁(Mg)合金的开发需求。在这项研究中,Zn,Ca,Zr,Gd和Sr与Mg的合金添加是按二元,三元和四元组合进行的,最大合金总负载量为-3 wt。%,因此被称为稀。研究这种稀合金是为了潜在的薄板应用。结合微观硬度研究了总共53种定制合金的腐蚀。结果表明,硬度随合金总载荷的增加而增加,而腐蚀速率与合金载荷没有明显的关系。相反,测试合金的腐蚀对独特合金添加的类型和数量都非常敏感。这表明性能的优化需要对独特合金添加剂的电化学影响有详细的了解。这项工作有助于理解对镁腐蚀的成分影响,并可用于预测现有和未来镁合金的耐腐蚀性。

著录项

  • 来源
    《Materials & design》 |2016年第1期|1034-1043|共10页
  • 作者单位

    Department of Materials Science and Engineering, Monash University, Victoria 3800, Australia;

    Department of Materials Science and Engineering, Monash University, Victoria 3800, Australia;

    Department of Mechanical and Aerospace Engineering, Monash University, Victoria 3800, Australia;

    Research Institute (R&D center), Baosteel Group Corporation, Shanghai 201900, PR China;

    Research Institute (R&D center), Baosteel Group Corporation, Shanghai 201900, PR China;

    Department of Materials Science and Engineering, Monash University, Victoria 3800, Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Magnesium; Mg alloys; Corrosion; Neural network; Hardness;

    机译:镁;镁合金腐蚀;神经网络;硬度;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号