首页> 外文期刊>Machine Vision and Applications >A unifying framework for automatic and semi-automatic segmentation of vertebrae from radiographs using sample-driven active shape models
【24h】

A unifying framework for automatic and semi-automatic segmentation of vertebrae from radiographs using sample-driven active shape models

机译:使用样本驱动的主动形状​​模型从射线照片自动和半自动分割椎骨的统一框架

获取原文
获取原文并翻译 | 示例

摘要

Segmentation of vertebral contours is an essential task in the design of imaging biomarkers for osteoporosis based on vertebra shape or texture. In this paper, we propose a novel automatic segmentation technique which can optionally be constrained by the user. The proposed technique solves the segmentation problem in a hierarchical manner. In the first phase, a coarse estimate of the overall spine alignment and the vertebra locations is computed using a sampling scheme. These samples are used to initialize a second phase of active shape model search, under a nonlinear model of vertebra appearance. The search is constrained by a conditional shape model, based on the variability of the coarse spine location estimates. In supplement, we describe an approach for manual initialization of the segmentation procedure as a simple set of constraints on the fully automatic technique. The technique is evaluated on a data base of 157 manually annotated lumbar radiographs, resulting in a final mean point-to-contour error of (0.81~pm ~0.98) mm for automatic segmentation. The results outperform the previous work in automatic vertebra segmentation in terms of both segmentation accuracy and failure rate, offering a both automatic and semi-automatic approach in one unifying framework.
机译:在基于椎骨形状或纹理的骨质疏松症生物标志物成像设计中,椎骨轮廓的分割是一项必不可少的任务。在本文中,我们提出了一种新颖的自动分割技术,该技术可以由用户可选地进行约束。所提出的技术以分层的方式解决了分割问题。在第一阶段,使用采样方案计算整个脊柱对齐和椎骨位置的粗略估计。这些样本用于在椎骨外观的非线性模型下初始化主动形状模型搜索的第二阶段。基于粗糙脊柱位置估计的可变性,搜索受条件形状模型约束。作为补充,我们描述了一种手动初始化分割过程的方法,作为对全自动技术的一组简单约束。该技术在157个手动注释的腰部X射线照片的数据库上进行了评估,最终导致自动分割的最终平均点到轮廓误差为(0.81〜pm〜0.98)mm。在分割准确度和失败率方面,结果都优于以前的自动椎骨分割工作,在一个统一的框架中提供了自动和半自动方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号