首页> 外文期刊>Machine Vision and Applications >High-dimensional MRI data analysis using a large-scale manifold learning approach
【24h】

High-dimensional MRI data analysis using a large-scale manifold learning approach

机译:使用大规模流形学习方法的高维MRI数据分析

获取原文
获取原文并翻译 | 示例

摘要

A novel manifold learning approach is presented to efficiently identify low-dimensional structures embedded in high-dimensional MRI data sets. These low-dimensional structures, known as manifolds, are used in this study for predicting brain tumor progression. The data sets consist of a series of high-dimensional MRI scans for four patients with tumor and progressed regions identified. We attempt to classify tumor, progressed and normal tissues in low-dimensional space. We also attempt to verify if a progression manifold exists—the bridge between tumor and normal manifolds. By identifying and mapping the bridge manifold back to MRI image space, this method has the potential to predict tumor progression. This could be greatly beneficial for patient management. Preliminary results have supported our hypothesis: normal and tumor manifolds are well separated in a low-dimensional space. Also, the progressed manifold is found to lie roughly between the normal and tumor manifolds.
机译:提出了一种新颖的流形学习方法来有效地识别嵌入在高维MRI数据集中的低维结构。这些低维结构(称为流形)在本研究中用于预测脑肿瘤的进展。数据集由针对四名患有肿瘤和已确定进展区域的患者的一系列高维MRI扫描组成。我们尝试在低维空间中对肿瘤,进展组织和正常组织进行分类。我们还尝试验证是否存在进展流形-肿瘤流形与正常流形之间的桥梁。通过识别桥总管并将其映射回MRI图像空间,该方法具有预测肿瘤进展的潜力。这对于患者管理可能是非常有益的。初步结果支持了我们的假设:正常的和肿瘤的歧管在低维空间中很好地分开。而且,发现进展的歧管大致位于正常和肿瘤歧管之间。

著录项

  • 来源
    《Machine Vision and Applications》 |2013年第5期|995-1014|共20页
  • 作者单位

    Department of Electrical and Computer Engineering Old Dominion University">(1);

    Department of Electrical and Computer Engineering Old Dominion University">(1);

    Department of Imaging Physics Division of Diagnostic Imaging University of Texas MD Anderson Cancer Center">(2);

    Department of Diagnostic Radiology Division of Diagnostic Imaging University of Texas MD Anderson Cancer Center">(3);

    Department of Electrical and Computer Engineering Old Dominion University">(1);

    Department of Computer Science Old Dominion University">(4);

    Department of Electrical and Computer Engineering Old Dominion University">(1);

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Brain tumor; Progression; Manifold; Sampling;

    机译:脑肿瘤;进步歧管;采样;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号